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ABSTRACT
Correlated spectral fluctuations were suggested to coordinate excitation transport inside natural light harvesting complexes. We demonstrate
the capacities of 2D line shapes from fifth-order coherent electronic signals (R5-2D) to report on such fluctuations in molecular aggregates
and present a stochastic approach to fluctuations in correlated site and bi-exciton binding energies in the optical dynamics of Frenkel excitons.
The model is applied to R5-2D line shapes of a homodimer, and we show that the peak tilt dynamics are a measure for site energy disorder,
inter-site correlation, and the strength of bi-exciton binding energy fluctuations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081053

I. INTRODUCTION

The remarkably high energy transfer efficiencies found in pho-
tosynthesis rests on pigment–protein complexes. In light harvesting
antennas, the protein arranges strongly absorbing chromophores in
close proximity with inter-pigment distances on the order of 10 Å.
Upon photoexcitation, their specific steric arrangement leads to the
formation of delocalized excitons. Their dynamics determine the
observed high energy transfer efficiencies beyond standard trans-
port theories.1 The intricate role played by the pigment–protein
interactions is at the heart of a long-lasting scientific debate. The the-
oretical approaches to this fascinating problem have been reviewed
elsewhere2 and can be categorized into theories focusing on the
role of high-frequency underdamped vibrations facilitating trans-
port via vibronic resonances3,4 and theories emphasizing the role of
the protein in coordinating low-frequency vibrational modulations
of pigments. Such correlations between site frequencies5 were sug-
gested to prolong the excitonic coherence lifetime, and the effect
of such protected coherent states on transfer efficiency is a topic
of the current debate.6 The experimental evidence for such corre-
lated fluctuations is mainly derived from two-dimensional electronic

spectroscopy or R3-2D and relies heavily on the analysis of relatively
weak beating features.7 In this work, we show that fifth order or R5-
2D spectroscopy gives more direct access to site correlation effects
in excitonic systems as well as spectral fluctuations of bi-exciton
binding energies. The inclusion of the latter has been shown to be
instrumental to obtain an agreement between simulated and mea-
sured non-linear line shapes of photosynthetic reaction centers at
low temperatures.8

In general terms, R5-2D electronic spectroscopy is a three
pulse experiment measured along K⃗R,NR = ∓2K⃗1 ± 2K⃗2 + K⃗3 phase
matching directions. Such signals were shown to specifically
address the relaxation pathways of bi-excitons,9,10 with empha-
sis on exciton–exciton annihilation11 (EEA); this process is not
directly accessible in experiments of lower orders. The alluring
feature of R5-2D is that—in homoaggregates with aligned tran-
sition dipoles—all inter-band transport contributions cancel by
integrating the R5-2D signal over excitation frequency Ω1 and
emission frequency Ω3 for every waiting time t2.12 The integrated
signal of aligned homoaggregates, thus, allows us to exclusively
track and pinpoint annihilation dynamics. For non-aligned struc-
tures, annihilation and transport contributions are intertwined in
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the integrated signal,12 but the anisotropy in the integrated signal
reports on the geometry of the aggregate.13 However, annihila-
tion dynamics in non-aligned aggregates can still be obtained from
the R5-2D signal by following the temporal evolution of specific
peaks.14

First, R5-2D experiments studied the diffusion limited annihi-
lation processes in various large molecular J-aggregates to extract
the picosecond exciton diffusion timescale controlling the rate of
annihilation.10,15 We have in contrast recently directly measured the
ultrafast annihilation timescale of 30 fs inside a squaraine trimer.14

The annihilation rate was extracted by following the peak volume
dynamics of a single peak employing a Markovian master equation
model.12 We omitted a detailed line shape analysis as the employed
model provides purely homogeneous line shapes despite the fact
that the data showed interesting features such as a clearly rec-
ognizable nodal line tilt and signs of dynamic disorder, i.e., line
shape dynamics. Such processes represent slow fluctuations of tran-
sition energies as studied extensively in 2D infrared spectroscopy
(2D-IR)16,17 and third order 2D electronic spectroscopy (R3-2D).
The said line shape changes—quantified by the center line (CL)
slope, eccentricity, or nodal line of 2D line shapes—have been
instrumental to evaluate environmental characteristics such as the
system’s frequency correlation function.18

In the present paper, we develop an accessible theoretical
approach to address signatures of dynamic disorder in R5-2D
line shapes of small molecular aggregates and extend the devel-
oped master equation of Ref. 12—limited to fast environmental
fluctuations—by slow spectral fluctuations responsible for line shape
dynamics.19 The latter are approximated by a classical stochas-
tic Gaussian modulation20,21 of site and bi-exciton binding ener-
gies. The developed model is employed to analyze R5-2D line
shape dynamics of molecular homodimers with H-type coupling
(H-homodimer). We find that the inclusion of dynamic disorder
introduces a tilt in the line shapes at t2 = 0 fs, which we demon-
strate to encode the sign and amount of correlations between
on-site energies and additionally the fluctuation magnitude of the
bi-exciton binding energy. We quantify and analyze the temporal
evolution of the tilted line shapes by the means of center lines,
introduced to extract frequency correlations from R3-2D and 2D-IR
spectra.17,18

II. MODEL
We consider a molecular aggregate consisting of N coupled

two level molecules. The electronic level structure and transport
dynamics within this system is described by the Frenkel exciton
Hamiltonian22

Ĥ(t) =
N

∑
n=1

Ên(t)B̂†
nB̂n +

N

∑
n,m=1
n≠m

JnmB̂†
nB̂m +

N

∑
n,m=1
n≠m

Δ̂nm(t)
2

B̂†
nB̂†

mB̂nB̂m.

(1)

Site energies Ên(t) and bi-exciton binding energies Δ̂nm(t) are sub-
ject of stochastic bath induced modulations. The excitonic coupling
Jnm is assumed to be constant as its modulations are usually quite
weak and have negligible influence on line shapes.23 B̂†

n and B̂n

are, respectively, the operators associated with excitation and
de-excitation of site n obeying the Pauli commutation relation,24

[B̂n, B̂†
m] = δmn(1 − 2B̂†

mB̂n). (2)

We further assume that the stochastic modulation of Ĥ(t)
around mean values Ēn (Δ̄nm) of on-site (bi-exciton binding) ener-
gies can be decomposed into slow classical En(t) (Δnm(t)) and fast
quantum Q̂n (Q̂nm) components. The slow classical components
are Gaussian25 and are thus fully characterized by the correlation
matrices

Σ(1)n,m(t) ≡ ⟨(En(t) − Ēn)(Em(0) − Ēm)⟩,

Σ(2)nm,kl(t) ≡ ⟨(Δnm(t) − Δ̄nm)(Δkl(0) − Δ̄kl)⟩,

Σ(2−1)
nm,k (t) ≡ ⟨(Δnm(t) − Δ̄nm)(Ek(0) − Ēk)⟩.

(3)

For simulations, it is feasible to decompose the Gaussian processes
En(t) and Δnm(t),

En(t) = Ēn +

Nq

∑
m=1

Dnmqm(t), (4)

Δnm(t) = Δ̄nm +

Nq

∑
k=1

D̃nm,kqk(t), (5)

into linear combinations of Nq independent Ornstein–Uhlenbeck20

(OU) processes qn(t), characterized by the exponentially decaying
correlation function

C(q)n (t) = ⟨qn(t)qn(0)⟩ = σ2
ne−t/τn , (6)

with timescale τn and magnitude σn. Correlations among site and
bi-exciton binding energies or between the two are then encoded in
coefficients Dnm and D̃nm,k as inserting Eqs. (4) and (5) into Eq. (3)
leads to

Σ(1)n,m(t) =
Nq

∑
j=1

DnjDmjC(q)j (t),

Σ(2)nm,kl(t) =
Nq

∑
j=1

D̃nm,jD̃kl,jC
(q)
j (t),

Σ(2−1)
nm,k (t) =

Nq

∑
j=1

D̃nm,jDkjC
(q)
j (t).

(7)

The above decomposition of the matrices Σ combines a separation
of timescales τn with the decomposition into products of the type
DDT , which can be numerically obtained employing the Cholesky
factorization algorithm.26

In the calculation scheme of the non-linear response functions,
presented below, the two point joint probability

P(qn(t), qn(0), t) =
1

2πσ2
n
√
(1 − e−2t/τn)

× exp
⎛

⎝
−

q2
n(t) + q2

n(0) − 2qn(t)qn(0)e−
t

τn

2σ2
n(1 − e−2t/τn)

⎞

⎠

(8)
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of the OU process [Eq. (6)] will be of special importance.
The fast coordinates Q̂n and Q̂nm induce transport and decoher-

ence and are considered quantum to ensure thermodynamic consis-
tence.27 We take advantage of the timescale separation between the
slow and fast coordinates and include the effect of Q̂n and Q̂nm by
a quantum master equation whose derivation is well documented
in the literature27 and shortly summarized in Appendix A. The
resulting excitonic master equation

∂

∂t
∣ρ(t)⟩⟩ = ℛ̆ ({q(t)})∣ρ(t)⟩⟩ (9)

with relaxation tensor

ℛ̆ ({q(t)}) = ℒ̆ ({q(t)}) + �̆� ({q(t)}) +𝒜 (10)

depends on the collection of slow coordinates {q(t)}
= (q1(t), q2(t), . . . , qn(t)) and consists out of three parts:
Liouvillian of the free evolution

ℒ̆ ({q(t)})∣ρ(t)⟩⟩ = −i[H(t), ρ̂(t)] (11)

generated by the slow (classical) part of Hamiltonian (1), i.e., by sub-
stituting solely Eqs. (4) and (5) for site Ê and bi-exciton binding
energies Δ̂ into Eq. (1). Dissipative dynamics �̆� ({q(t)}) gener-
ated by the fast component is calculated in the Redfield28 limit and
induces homogeneous line broadening and population relaxation.
𝒜 describes EEA as unidirectional transfer between manifolds dif-
fering in one quantum of excitation with phenomenological rates
kA

i (i = 1, . . . , N − 1). Our model thus omits a detailed microscopic
description of EEA via an additional transient local state29–31 and
represents the minimal model retaining only the most essential
structure of the manifolds and transport processes required for sim-
ulating peak shapes of R5-2D signals. The detailed equations can be
found in Appendix A.

To calculate the fifth-order response emitted into rephas-
ing (K⃗R = −2K⃗1 + 2K⃗2 + K⃗3) and non-rephasing (K⃗NR = 2K⃗1 − 2K⃗2
+ K⃗3) phase matching directions, we employ Kubo theory and
the impulsive limit.32,33 The interaction between the aggregate
and the electric field ℰ (t) = ∑3

j=1ℰ jδ(t − τj) is described semi-
classically,

Ĥint(t) = −μ̂ℰ (t) + c.c, (12)

where μ̂ = ∑N
n=1dnB̂†

n is the total dipole operator and dn is the tran-
sition dipole moment of molecule n. To include the stochastic
dynamics of Eqs. (3)–(11) into the model, we adapt the calculation
strategy of Ref. 34: First, we calculate the non-linear response func-
tions along non-rephasing and rephasing phase matching directions
for a specific trajectory {/q (t)}, and later, we average over all pos-
sible trajectories. We employ the Liouville space notation,35,36 with
inner product ⟨⟨A∣∣B⟩⟩ ≡ Tr Â†B̂. The excitonic density matrix ele-
ment before the first light–matter interaction, with the system in its
ground state, reads as ∣gg⟩⟩. By using Green’s function superoperator
technique,24 one obtains

S(5)NR (t1, t2, t3;{/q (τ)}) = (i)5
⟨⟨μ∣�̆� (t1 + t2, t1 + t2 + t3;{/q (τ)})μ̆(+)

× �̆� (t1, t1 + t2;{/q (τ)})μ̆(−)μ̆(−)

× �̆� (0, t1;{/q (τ)})μ̆(+)μ̆(+)∣gg⟩⟩
(13)

for the non-rephasing signal and

S(5)R (t1, t2, t3;{/q (τ)}) = (i)5
⟨⟨μ∣�̆� (t1 + t2, t1 + t2 + t3;{/q (τ)})μ̆(+)

× �̆� (t1, t1 + t2;{/q (τ)})μ̆(+)μ̆(+)

× �̆� (0, t1;{/q (τ)})μ̆(−)μ̆(−)∣gg⟩⟩
(14)

for the rephasing signal. The dipole superoperators μ̆(+)

≡ ∑
N
n=1dn(B̆†

nl − B̆†
nr) and μ̆(−) ≡ ∑N

n=1dn(B̆nl − B̆nr) are defined
employing left B̆l∣A⟩⟩ ≡ B̂Â and right B̆r ∣A⟩⟩ ≡ ÂB̂ multiplication
superoperators. The response functions (13) and (14) and Green’s
function solution to the excitonic master equation (9),

�̆� (ta, tb;{/q (τ)}) = exp+{∫
tb

ta

dτℛ̆ ({q(τ)})}, (15)

depend on the entire stochastic trajectories, what we emphasized
by the {/q (t)} notation. To calculate the final response functions,
we have to perform as the next step an average over the complete
collection of stochastic paths. To facilitate the non-trivial averaging
procedure, we again employ the slow character of coordinates q(t)
and assume that they are stable during the short coherence intervals
t1 and t3. Green’s function (15) then parametrically depends on the
value of q(t) at single time. The explicit dependence of the superop-
erator exponential on both the initial (ta) and final (tb) time then
reduces to a function of the interval tb − ta. In particular, in the t1
interval, we have

�̆� (0, t1;{/q (τ)}) ≈ �̆� (t1;{q(0)}) = exp{ℛ̆ ({q(0)})t1} (16)

and in the t3 interval, we have

�̆� (t1 + t2, t1 + t2 + t3;{/q (τ)}) ≈ �̆� (t3;{q(t2)})

= exp{ℛ̆ ({q(t2)})t3}. (17)

In population interval t2, we allow for the changes in q coordinates,
but the associated relaxation dynamics will only be re-parameterized
in the middle of the interval.37 Green’s function thus propagates half
of the t2 interval with ℛ̆ taken at q(0) and the remaining part with
q(t2). These assumptions lead to the non-rephasing signal

S(5)NR (t1, t2, t3;{/q (τ)})

≈ (i)5
⟨⟨μ∣�̆� (t3;{q(t2)})μ̆(+)�̆� (

t2

2
;{q(t2)})�̆� (

t2

2
;{q(0)})

× μ̆(−)μ̆(−)�̆� (t1;{q(0)})μ̆(+)μ̆(+)∣gg⟩⟩ (18)

and the rephasing signal

S(5)R (t1, t2, t3;{/q (τ)})

≈ (i)5
⟨⟨μ∣�̆� (t3;{q(t2)})μ̆(+)�̆� (

t2

2
;{q(t2)})�̆� (

t2

2
;{q(0)})

× μ̆(+)μ̆(+)�̆� (t1;{q(0)})μ̆(−)μ̆(−)∣gg⟩⟩ (19)
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Equations (18) and (19) now depend on q at time zero and a single
t2 value at a later time, and the final averaging ⟨⋅ ⋅ ⋅⟩ of rephasing
and non-rephasing signals of the fifth-order response over stochastic
trajectories is then performed with the two time joint probabilities
introduced in Eq. (8), resulting in

R(5)R;NR(t1, t2, t3) = ⟨S(5)R;NR(t1, t2, t3;{/q (τ)})⟩

≈

Nq

∏
n=1
(∫

∞

−∞
dqn(t2)∫

∞

−∞
dqn(0))

× S(5)R;NR(t1, t2, t3;{q(t2)},{q(0)})

×

Nq

∏
n=1

P(qn(t2), qn(0), t2). (20)

The purely absorptive line shapes of the R5-2D signal

R̃2D(Ω1, t2, Ω3) ≡ R̃R(Ω1, t2, Ω3) + R̃NR(Ω1, t2, Ω3) (21)

are obtained by adding the non-rephasing signal

R̃NR(Ω1, t2, Ω3) ≡ −Im{∫
∞

0
dt1∫

∞

0
dt3eiΩ1t1 eiΩ3t3 R(5)NR (t1, t2, t3)}

(22)

and the rephasing signal

R̃R(Ω1, t2, Ω3) ≡ −Im{∫
∞

0
dt1∫

∞

0
dt3e−iΩ1t1 eiΩ3t3 R(5)R (t1, t2, t3)}

(23)

transformed into the mixed time–frequency domain.

III. RESULTS AND DISCUSSION
We demonstrate the capacity of the presented calculation

scheme to simulate R5-2D line shapes of a strongly coupled molec-
ular H-homodimer (J > 0) with average site energies Ē1 = Ē2 ≡ Ē
and transition dipole moments d1 = d2 ≡ d. Similarly, the slow site
energy fluctuations have the same fluctuation magnitudes σE and
decorrelation timescale τE,

Σ(1)11 (t) ≡ Σ(1)22 (t) ≡ σ2
Ee−t/τE , (24)

but may have a variable degree of correlation β ∈ [−1, 1] between the
two on-site fluctuations, i.e.,

Σ(1)12 (t) ≡ Σ(1)21 (t) ≡ βσ2
Ee−t/τE . (25)

The fluctuations of the bi-exciton binding energy

Σ(2)(t) ≡ σ2
Δe−t/τΔ (26)

have magnitude σΔ and timescale τΔ and are chosen to be inde-
pendent of single exciton fluctuations [Σ(2−1)

(t) ≡ 0]. We will often
compare magnitudes of single exciton and bi-exciton fluctuations by
the ratio

γ ≡
σΔ

σE
. (27)

The optical line shapes are best analyzed in terms of transition
frequencies,

ωa1g(t) =
E1(t) + E2(t)

2
−

1
2

√
(E1(t) − E2(t))2 + 4J2,

ωa2g(t) =
E1(t) + E2(t)

2
+

1
2

√
(E1(t) − E2(t))2 + 4J2,

ωαa1(t) = ωa2g(t) + Δ(t),
ωαa2(t) = ωa1g(t) + Δ(t),
ωαg(t) = E1(t) + E2(t) + Δ(t),

(28)

between instantaneous eigenstates (see Fig. 1) consisting of the
collective ground state ∣g⟩, the bi-exciton state

∣α⟩ = B̂†
1B̂†

2 ∣g⟩ (29)

and two delocalized single exciton states

∣a1(t)⟩ = − sin(θ)B̂†
1 ∣g⟩ + cos(θ)B̂†

2 ∣g⟩,

∣a2(t)⟩ = cos(θ)B̂†
1 ∣g⟩ + sin(θ)B̂†

2 ∣g⟩,
(30)

with mixing angle

θ(t) =
1
2

arccot(
E1(t) − E2(t)

2J
). (31)

Transition dipoles between excitonic states are given by

μa1g(t) = μαa1(t) = d[cos(θ) − sin(θ)],
μa2g(t) = μαa2(t) = d[cos(θ) + sin(θ)].

(32)

In the following simulations, we further simplified the trans-
port dynamics and consider the gap between the single exciton

FIG. 1. Electronic energy level structure of the strongly coupled fluctuating dimer
model discussed in the main text. The fluctuations inside the excitonic basis
induced by site energies En(t) and the bi-exciton binding energy Δ(t) are
depicted with blue and violet arrows, respectively. The two dominant transitions
of the homodimer are depicted with full red arrows, whereas transitions possible
due to strong fluctuations (with respect to the coupling) are depicted with dashed
arrows.
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states to be much larger than the thermal energy so that the upward
transport is negligible. Population dynamics are thus determined by
two parameters: the rate constant kR for population relaxation from
the energetically higher lying single exciton state ∣a2⟩ to the lower
lying single exciton state ∣a1⟩ and the rate kA depleting population
from bi-exciton state ∣α⟩.

In Secs. III A and III B, we compare R5-2D line shapes of
homodimers from which bi-exciton fluctuations are fully derived
from on-site frequencies and have no autonomous spectral motions
(γ = 0) with the case including additional autonomous bi-exciton
fluctuations (γ ≠ 0).

A. Non-autonomous bi-exciton fluctuations (γ = 0)
We start the discussion of the R5-2D signals with a

H-homodimer from which bi-exciton fluctuations are built up
entirely from site energy fluctuations and have no independent
(autonomous) component (γ = 0). The simulated R5-2D line shapes
in the slow annihilation limit (kA ≪ kR) are depicted in Fig. 2
assuming uncorrelated [β = 0, (a)], correlated [β = 1, (b)], and
anticorrelated [β = −1, (c)] on-site fluctuations.

We first recapitulate12 the overall structure of the
H-homodimer R5-2D signal based on the inspection of double-sided
Feynman diagrams depicted in Fig. 2(d): All diagrams evolve with
coherence ∣αg⟩⟩ during t1 (i.e., with frequency ωαg) corresponding
to the observed peak positions at Ω1 = 30 000 cm−1. During
t3, the coherences oscillate with frequencies ωa2g ≈ 15 800 cm−1

[high-frequency negative peak, contributions are represented by
the following pathways in Fig. 2(d): ground state bleach (GSB),
single-quantum stimulated emission (1Q-SE), and EEA stimulated
emission (EEA-SE)] and ωαa2 ≈ 14 200 cm−1 [low-frequency posi-
tive peak, contributions are represented by the following pathways
in Fig. 2(d): single-quantum excited state absorption (1Q-ESA),
double-quantum stimulated emission (2Q-SE) and EEA excited
state absorption (EEA-ESA)]. Their interference yields the observed
two-peak structure at t2 = 0 fs. The signal of the H-homodimer
becomes dominated by the GSB diagram at long waiting times
(panels of the second column from the left), and it reveals certain
differences in the overall structure between the three panels when
all transport and annihilation dynamics are finished (kRt2 ≫ 1
and kAt2 ≫ 1) and the lower, positive peak is damped. In the
anticorrelated case, another negative low [magnified by 20% in
Fig. 2(c)] frequency peak becomes apparent at (ωαg , ωa1g). The
feature appears due to the transient redistribution of the dipole
moment strength toward the dark state34 ∣a1⟩ as the fluctua-
tions (σE = 600 cm−1) are comparable to the excitonic coupling
(J = 800 cm−1). This effect also leads to the slightly asymmetric long
time line shape of the uncorrelated case. Such a feature cannot be
seen in the case of correlated fluctuations as the on-site energies
are always identical, and no redistribution of the dipole moment
strength is possible.

Having understood the overall peak structure, we next focus
on the influence of dynamic disorder on the line shapes. To gain
a deeper understanding of the relation between line shapes and
disorder, we compare the line shapes [two leftmost panels of
Figs. 2(a)–2(c)] with correlation statistics [two rightmost panels of
Figs. 2(a)–2(c)] of the initial double (2Q) frequency ωαg(0) with

delayed single (1Q) frequencies ωa2g(t2) relevant for the negative
peak (blue points),

P̃−(Ω1, t2, Ω3) ≡ ⟨δ(Ω1 − ωαg(0))δ(Ω3 − ωa2g(t2))⟩, (33)

and ωαa2(t2) relevant for the positive peak (orange points),

P̃+(Ω1, t2, Ω3) ≡ ⟨δ(Ω1 − ωαg(0))δ(Ω3 − ωαa2(t2))⟩, (34)

obtained by diagonalizing 5000 sample trajectories [Eqs. (4) and (5)]
of the Frenkel exciton Hamiltonian (1). Gaussian approximations to
these 1Q-2Q statistics are given analytically in Appendix B for the
general dimer model allowing for difference Eδ ≡ Ē1 − Ē2 between
site energies and general correlation matrix elements (3). The results
of Appendix B are used in the main text in the homodimer limit:
Eqs. (24) and (25) and Eδ = 0 [except Eq. (39)].

The t2/τE = 0 R5-2D maps of both the uncorrelated [Fig. 2(a)]
and correlated [Fig. 2(b)] cases show that disorder induces ellip-
tical and tilted line shapes. The magnitude of the tilt at zero
delay time is quite similar for both peaks. After bath decorrela-
tion at longer times (t2/τE = 5), the peak loses its tilt but remains
elliptical.

The 1Q-2Q statistics of Figs. 2(a) and 2(b) resembles well the
line shapes, differences between the two are largely ascribed to
homogeneous broadening of the line shapes induced by the fast
quantum coordinates. We can qualitatively understand the tilt’s
dynamics by calculating the principal axis of the elliptical contours
[depicted in Figs. 2(a) and 2(b)] of the Gaussian approximation [see
Eq. (B8) in Appendix B]. We find that the t2/τE = 0 line shapes and
1Q-2Q statistics are centered around lines,

Ω3,∓ = 0.5Ω1 ± J, (35)

as both single exciton ωa2g(0)∝ ωαa2(0)∝ (E1(0) + E2(0))/2 and
bi-exciton ωαg(0) = E1(0) + E2(0) energies reflect the same combi-
nation of site energies. The general delay dependent angle between
the principal and Ω1 axis is given by

tan(2Φ±(t2)) =
4
3

CE(t2) (36)

for both the positive (Φ+) and negative (Φ−) peaks with normalized
correlation function

CE(t) ≡
Σ(1)11 (t)
Σ(1)11 (0)

=
Σ(1)22 (t)
Σ(1)22 (0)

. (37)

The time dependence of the above tilts is a substantial difference to
the GSB peak of R3-2D, where tan(Φ) = 1 holds at all t2 times.18

The case of anticorrelated sites (β = −1) depicted in Fig. 2(c)
is vastly different compared to the above discussed cases: Both the
negative and the positive peaks are not tilted and remain rather
homogeneous. The reason is that the 2Q-energy ωαg(t) ≡ ωαg ≡ 2Ē
is stabilized by the anticorrelated motion of the sites for all wait-
ing times and fluctuations of 1Q-energies are quadratic in (E1 − E2)

such that negligible inhomogeneous broadening occurs exclusively
toward higher (lower) values of the mean frequencies of the negative
(positive) peak along Ω3.
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Changing the type of on-site correlations affects the line shapes
and the 1Q-2Q statistics (see Fig. 2). The latter is unfortunately not
a direct spectroscopic observable, and the above characterization of
dynamics by the principal axis (36) is limited to elliptic contours of

Gaussian peaks. Next, we will thus inquire how the correlated spec-
tral dynamics can be quantitatively extracted from the R5-2D line
shapes. To step beyond the limit of the elliptical line shapes, we adopt
the concept of the center line16–18 (CL) that quantifies the line shape

FIG. 2. The first two panels (from left to right) in (a)–(c) depict R5-2D line shapes of a homodimer for two different waiting times assuming slow annihilation
dynamics (kA ≪ kR). We chose Ē = 15 000 cm−1, J = 800 cm−1, Δ̄ = 0 cm−1, σE = 600 cm−1, γ = 0, τE = 100 fs, k−1

A = 100 fs, and k−1
R = 30 fs,

and all line shapes are averaged over 40 000 realizations of the OU process. Fluctuations on the two sites are assumed to be (top to bottom) uncorre-
lated, correlated, and anticorrelated. R5-2D signals are normalized to their minimum value at each waiting time. The minor negative feature below the main
peak in the t2/τE = 5 map of the anticorrelated case is magnified by 20%. The two panels on the right map the process of dynamic disorder by corre-
lating frequencies ωαa2(t2) (orange) and ωa2g(t2) (blue) with frequency ωαg(0) obtained from the OU trajectories. The dashed black line depicts the line
Ω3 = 0.5Ω1. (d) Non-rephasing double-sided Feynman diagrams contributing to the dimer signal. The rephasing pathways can be found in Ref. 12.
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variability without any reference to a specific line shape type. The
forward center line (FCL) [backward center line (BCL)] obtained by
maximizing the signal along Ω3 (Ω1) for fixed Ω1 (Ω3) is depicted
in Fig. 3(a). Their slopes around the peak center of the negative peak
are further analyzed as a function of t2 in Figs. 3(b) and 3(c) for the
three correlation cases. The value of the FCL and inverse of the BCL
slope at t2/τE = 0 shows a clear dependence on β as it is increased
(decreased) with the amount of positive (negative) correlation with
respect to the uncorrelated case as can be seen from Figs. 3(b)
and 3(c).

FIG. 3. (a) FCL (full lines) and BCL (dashed lines) for uncorrelated (blue), corre-
lated (red), and anticorrelated (green) on-site fluctuations. The transparent R5-2D
line shapes in the background serve as a reference and are the same as in
Fig. 2(a), i.e., uncorrelated and slow annihilation. (b) and (c) Slope of the FCL/BCL
vs the waiting time t2 for all correlation cases. The fit of the center line dynamics
with a single exponential decay is depicted with dashed black lines.

The general temporal evolution of the negative peak’s FCL
and BCL slope is readily understood from analyzing the Gaussian
approximation to the underlying statistics. We obtain

[
Ω3 − ω̄a2g

ΩBCL
1 − ω̄αg

]

−1

= 2CE(t2),

ΩFCL
3 − ω̄a2g

Ω1 − ω̄αg
=

1
2

CE(t2),

(38)

for the time profile of the BCL and FCL, respectively. The evolution
is thus governed by the correlation function CE(t2), which describes
an exponential decay with timescale τE. Fitting the FCL/BCL values
obtained from the line shapes with a mono-exponential decay, we
obtain a timescale of 90 fs (β = 0) or 85 fs (β = 1). Both values reflect
well the relevant model input parameter, namely, the correlation
timescale τE = 100 fs. The center lines can thus be used to measure
decorrelation similarly to R3-2D.18 Both the simulations depicted in
Fig. 3 and the Gaussian analysis [symmetry Eq. (38)] additionally
suggest that BCL and FCL report similarly on the tilts dynamics.
However, in contrast to 2D-IR spectroscopy where a similar mir-
ror symmetry is underlied by fundamental time reversal symmetry
of stochastic dynamics at equilibrium [see Eq. (8) in Ref. 18], this
observation here is approximate and limited to the present γ = 0 case
(see Sec. III B).

While the Gaussian approximation to the CLs explains the
observed decorrelation behavior, it is less successful to explain the
sensitivity of the line shapes to inter-site correlation at zero, where
vanishing sensitivity is predicted at Eδ = 0, contrary to our simula-
tions. The main problem with the analysis is that the approximate
1Q-2Q statistics does not capture the finite width of the distribution
at t2/τE = 0 and more importantly has a singularity at that point in
time. To remove the singularity, we investigate the 1Q-2Q statistics
for finite but small site energy difference Eδ ≠ 0. The time profile
of the FCL [Eq. (38)] is unchanged for the homodimer, but we
obtain

[
Ω3 − ω̄a2g

ΩBCL
1 − ω̄αg

]

−1

=
2(1 + β)

1 + ε2 + (1 − ε2)β
CE(t2), (39)

with

ε =
Eδ

√
E2

δ + 4J2
, (40)

for the BCL. The degree of on-site correlation β thus changes the
BCL dynamics directly by changing the underlying 1Q-2Q statis-
tics [see Eq. (39)], but the observed β-dependence of the FCL rests
in an interference effect between the various homogeneous contri-
butions as the width of the 1Q-2Q distribution is increased with
increasing β [see Eq. (B11)]. One is tempted to conclude from this
result that there is a degeneracy between the FCL of the correlated
and a rescaled uncorrelated model with the same amount of homo-
geneous broadening; the general scaling factor between the models
is
√

1 + β. However, comparing the CLS-values from the correlated
model (β = 1) to a rescaled uncorrelated model (scaling factor

√
2),

we find appreciable differences between the two scenarios for the
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negative R5-2D peak. Specifically, there is a 3% difference between
the FCLs and an 8% difference between the BCLs for the corre-
lated and uncorrelated model. Hence, CLS analysis in R5-2D gives
access to the site energy correlations quantified by β. These results
are appealing as they suggest that having experimental data at hand,
one can only find agreement between experimental and theoretical
FCL (BCL) slope dynamics if the correlation between the sites is
taken into account, implying that the slope of the CLs can be used
to parameterize the type and amount of inter-site correlation β and
also the fluctuation timescales.

At long waiting times (t2/τE ≫ 1), the line shapes are decor-
related (zero slope of FCL) and asymmetrically stretched, as the 2Q
statistics seen along Ω1 is broader than 1Q along Ω3. The standard
deviation along Ω1 and Ω3 for both negative and positive peaks
satisfies the relation

σ2
±,Ω1 = 4σ2

±,Ω3 . (41)

The anticorrelated line shapes remain homogeneous at all t2
times as the 1Q-2Q statistics is stable.

The previous discussion of Figs. 2 and 3 was worked out for
slow annihilation dynamics, which is not always the case in small
molecular aggregates.14,38 In the following, we check the sensitivity
of the line shapes to inter-site correlations also for fast annihi-
lation (k−1

A ≫ k−1
R ). This parameter setting modifies substantially

the underlying homogeneous broadening of coherences ∣αg⟩⟩ and
∣αa2⟩⟩, but not coherence ∣a2 g⟩⟩. The negative peak is thus broad-
ened along Ω1 and the positive peak along Ω1 and Ω3 axis, as
depicted in Figs. 4(a) and 4(b). The case of anticorrelated fluctua-
tions is again special: A higher degree of localization and redistribu-
tion of dipole strength lifts the clear separation between GSB, 1Q-SE,
1Q-ESA, and 2Q-SE pathways. Additional pathways in coherence
∣αa2⟩⟩ or ∣a1 g⟩⟩ in t3 thus contribute to the positive peak. The inter-
ference between narrow/negative (GSB, 1Q-SE) and broad/positive
(1Q-ESA, 2Q-SE) contributions along Ω3 leads to a split peak that
is positive at the edges and negative in its center. We reported sim-
ilar features for weakly coupled homodimers and heterodimers in
Ref. 12.

We will in the following focus on the FCL, which will be shown
in Sec. III B to be sensitive to both parameters of interest, i.e., β and γ.
The FCLs obtained from the simulations are depicted in Fig. 5. The
slope values are generally decreased compared to the case of slow
annihilation but have a similar β-dependence. The initial FCL value
is thus a complex function of the degree and sign of the on-site corre-
lation and also the model parameter defining the (in)homogeneous
width.

B. Autonomous bi-exciton fluctuations (γ ≠ 0)
Our conclusions so far were derived from a model that neglects

bi-exciton binding energy fluctuations. This is a common assump-
tion made to reduce the number of independent model parameters
for the fluctuations of the second excitonic manifold. R5-2D is,
however, a promising candidate to indicate shortcomings of this
assumption, as fluctuations of frequency ωαg are tracked vs the wait-
ing time t2. In this section, we will thus give the bi-exciton state
more freedom to fluctuate, i.e., γ ≠ 0; otherwise, the line shapes and

FIG. 4. R5-2D line shapes of a homodimer assuming fast annihilation. We chose
k−1

A = 5 fs; other parameters are the same as in Fig. 2. The two sites are assumed
to be (top to bottom) uncorrelated, correlated, and anticorrelated.

FIG. 5. FCL in the case of uncorrelated (blue), correlated (red), and anticorrelated
(green) fluctuations. The transparent R5-2D line shapes in the background are the
same as in Fig. 4(a), i.e., uncorrelated fluctuations and fast annihilation.
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1Q-2Q plots displayed in Fig. 6 are plotted for the same parame-
ters as Fig. 2. Upon first inspection, we find that the tilts of the
negative and positive peaks at t2/τE = 0 are quite different com-
pared to the γ = 0 case for all values of β and still follow well the
1Q-2Q statistics plots shown on the right. To estimate the tilt, we
again use the Gaussian approximation to the 1Q-2Q statistics and
obtain

tan[2Φ−(t2)] =
2(1 + β)

γ2 + 3
2(1 + β)

CE(t2),

tan[2Φ+(t2)] =
γ2CΔ(t2) + (1 + β)CE(t2)

3
4(1 + β)

,
(42)

for the negative and positive peak, respectively, with the normalized
correlation function of the bi-exciton fluctuations,

CΔ(t) ≡
Σ(2)(t)
Σ(2)(0)

. (43)

The timescale of the bi-exciton fluctuations τΔ is thus encoded
in the evolution of the positive peak, which disappears for the
H-homodimer. The lines Ωβ,γ

3,± are depicted in the 1Q-2Q plots of
Figs. 6(a) and 6(b) for the respective β value and γ = 2 and follow
well the tilt of the correlation plots. For uncorrelated fluctuations
(β = 0) with the same decorrelation time profile [CE(t) = CΔ(t)],
we can directly relate γ to the ratio

tan[2Φ+(t2)]

tan[2Φ−(t2)]
≈ (

2
3

γ2
+ 1)(γ2

+ 1) (44)

of angles (42). The differences in slopes Φ±(t2) are, thus, a direct
indication of finite γ.

The anticorrelated site energies are again special: The negative
peak is inhomogeneously broadened along Ω1 by σΔ and along Ω3
by the quadratic site energy difference similar to the γ = 0 model.
The positive peak displays a tilt as peaks are shifted along the
lines,

FIG. 6. Same as Figs. 2(a)–2(c), but γ = 2 and τE = τΔ = 100 fs.
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Ωβ=−1,γ≠0
3,− = Ē + J,

Ωβ=−1,γ≠0
3,+ = Ω1 − Ē − J,

(45)

which leads to a slightly more homogeneous spectrum compared to
the γ = 0 model.

The t2/τE = 0 line shapes depicted in Fig. 6 follow well their
corresponding 1Q-2Q statistics, but the actual tilt (FCL/BCL slope)
of the line shapes is again modified by model parameters defining
homogeneous broadening. The degree of correlation β is again seen
in the increasingly strict alignment of the negative peak’s tilt, as
depicted in Fig. 7. The positive peak shows a different behavior, as
the FCL slope of the correlated case is smaller than the uncorrelated
case, and the FCL slope of the anticorrelated case is not defined as the
FCL displays a step due to the double-peak structure, similar to the
discussed case of fast annihilation. The positive peak’s slope of the
H-homodimer should thus be analyzed carefully as it is not always
well defined.

For the temporal evolution of the FCL and BCL of the negative
peak, we find

[
Ω3 − ω̄a2g

ΩBCL
1 − ω̄αg

]

−1

= 2CE(t2),

ΩFCL
3 − ω̄a2g

Ω1 − ω̄αg
=

1 + β
γ2 + 2(1 + β)

CE(t2),

(46)

highlighting the sensitivity of the FCL to both β and γ. The case of
β = −1 is again special as the negative peak displays no line shape
dynamics. The changes in the 1Q-2Q statistics of the positive peak
are not visible in the line shapes as this peak disappears for the
H-homodimer.

At long waiting times (t2/τE ≫ 1), the line shapes are decor-
related [zero FCL, see Eq. (46)] and again asymmetrically stretched.

FIG. 7. FCL in the case of uncorrelated (blue), correlated (red), and anticorrelated
(green) fluctuations. The transparent R5-2D line shapes in the background are the
same as in Fig. 6(a), i.e., uncorrelated and slow annihilation.

The standard deviations along Ω1 and Ω3 are, however, different for
the negative

σ2
−,Ω1 ≡ 2(1 + β)σ2

E + σ2
Δ,

σ2
−,Ω3 ≡

1
2
(1 + β)σ2

E

(47)

and positive

σ2
+,Ω1 = σ2

−,Ω1 ,

σ2
+,Ω3 ≡ σ2

−,Ω3 + σ2
Δ,

(48)

peak. From Eqs. (47) and (48), we can understand the observed addi-
tional stretching along Ω1 as a result from the bi-exciton fluctuation
magnitude σ2

Δ.

IV. CONCLUSION
We present a model of spectral fluctuations in fifth-order spec-

troscopy of an excitonically coupled system and demonstrated that
R5-2D line shapes are able to quantify correlations between site ener-
gies, without the need to analyze beatings in R3-2D signals. Hence,
the methods discussed here can contribute to the discussion on the
suggested role of site energy correlations in energy transport through
biological light harvesting systems.5,6

In particular, we accounted for the effect of dynamic disorder
in R5-2D line shapes of a molecular H-homodimer. We based the
model on the master equation formalism of Ref. 12, which ensures
a thermodynamically consistent transport description and added
a slow stochastic classical coordinate to address the peak tilt and
its delay time dynamics. The timescale separation between the fast
bath fluctuations responsible for transport and slow fluctuations
inducing line-shaping effects is a key assumption for the present
strategy and avoids the shortcomings of the individual components:
purely homogeneous line shapes of a master equation approach and
high temperature equilibrium between excitons set by stochastic
quantum dynamics.21 Justified alternatives to the present approach
exist, but they are less feasible from a computational point of view:
Stochastic quantum dynamics can be brought to finite temperatures
by the hierarchical equations of motion (HEOM),39 but procedures
to calculate line shapes of multi-excitonic systems34 or attempts
to untangle HEOM into stochastic trajectories are numerically
challenging even for the simplest aggregates.

In an extension of the strategy presented in Appendix B to
approximate statistics of transition frequencies, the Gaussian char-
acter of typical noise can also justify a treatment of the diagonal
fluctuations by the second cumulant,33,37 while the effects of slow
off-diagonal fluctuations on line shapes (beyond their contribu-
tion to transport rates) is omitted. Such an alternative strategy
thus ignores, e.g., possible dipole redistribution, as discussed below
Fig. 2(c) or in Ref. 34, and is not recommendable before more
sophisticated accounts of off-diagonal disorder are included into the
cumulant approach.40

Within our presented model, we found a tilt—quantified with
the aid of CLS—of the R5-2D line shapes and connected its waiting
time dynamics with autocorrelation timescales of on-site fluctua-
tions τE and bi-exciton binding energy fluctuations τΔ. We addi-
tionally found that the negative peak of the H-homodimer—related

J. Chem. Phys. 156, 084114 (2022); doi: 10.1063/5.0081053 156, 084114-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Comparison of the correlation statistics of coherent 2D techniques (R5-2D:
±2K⃗1 ∓ 2K⃗2 + K⃗3, R3-2D: ±K⃗1 ∓ K⃗2 + K⃗3, and 2Q-R3-2D: +K⃗1 + K⃗2 − K⃗3) mea-
sured on a homodimer. All signals display a two-peak structure reflecting transition
frequencies ωag and ωαa along Ω3, and both peaks are centered either at ωag or
ωαg along Ω1. Their line shapes, however, represent different types of correlation
functions as summarized in this table.

Signal type Correlation statistics related to the observed peaks

R5-2D ⟨δ(Ω1 − ωαg(0))δ(Ω3 − ωag(t2))⟩

⟨δ(Ω1 − ωαg(0))δ(Ω3 − ωαa(t2))⟩

R3-2D ⟨δ(Ω1 − ωag(0))δ(Ω3 − ωag(t2))⟩

⟨δ(Ω1 − ωag(0))δ(Ω3 − ωαa(t2))⟩

2Q-R3-2D ⟨δ(Ω2 − ωαg(0))δ(Ω3 − ωag(0))⟩
⟨δ(Ω2 − ωαg(0))δ(Ω3 − ωαa(0))⟩

to frequency pairs (ωαg(0), ωa2g(t2))—is generally better suited to
extract CLS dynamics than the positive peak. A CLS analysis of the
negative peak showed that the FCL of the peak is sensitive to both
the amount of inter-site correlation β and the magnitude γ of inde-
pendent bi-exciton binding energy fluctuations. As a rule of thumb,
we find that the bi-exciton binding energies are fluctuating inde-
pendently if the peaks of the H-dimer are asymmetrically tilted [see
Eq. (44)] at t2/τE = 0.

Information about inter-site correlation is challenging to obtain
from steady state41–44 or third order time resolved spectroscopic
techniques such as pump probe45–47 or R3-2D.48,49 The main advan-
tage of R5-2D over these methods is that two-exciton fluctuations
can be tracked over the waiting time period unlike linear and
third-order techniques, as can be seen from Table I where we sum-
marized the different correlation functions of various non-linear
techniques to highlight this point.

These results shed new light on the R5-2D technique as exper-
imental and theoretical studies focused so far on the temporal
evolution of specific peaks or the integrated signal to extract anni-
hilation or diffusion timescales in molecular aggregates, but a line
shape analysis—beyond pulse related artifacts50—has been omitted.
We showed that R5-2D line shapes are rich in information and are
essential to analyze the coordination between spectral fluctuations
of nearby molecules and bi-exciton binding energies.
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APPENDIX A: QUANTUM MASTER EQUATION
FOR EXCITON TRANSPORT AND ANNIHILATION

In this appendix, we summarize for the reader’s convenience
the master equation model for exciton transport and annihilation.
We follow closely our derivation presented in Ref. 12 for the stochas-
tic version of the model in this work. We work in natural units
where the Planck constant h, the speed of light c, and the Boltzmann
constant kB are set to one, i.e., h = c = kB = 1.

We shall start with the time scale separation where the slow
classical fluctuations are singled out from Eq. (1) and the free
Hamiltonian22

Ĥ0({q}) =
N

∑
n=1

Ên({q})B̂†
nB̂n +

N

∑
n,m=1
n≠m

JnmB̂†
nB̂m

+
N

∑
n,m=1
n≠m

Δ̂nm({q})
2

B̂†
nB̂†

mB̂nB̂m (A1)

is considered at a fixed value of q. In contrast, the fast bath coor-
dinates Q̂n affecting the site energies are quantum and dynamical.
Their time-dependent (Dirac) picture is defined with respect to
the bath Hamiltonian, i.e., Q̂n(t) ≡ eiĤBtQ̂ne−iĤBt . We standardly
assume ĤB to be harmonic and, additionally, that coordinates Q̂n
are mutually uncorrelated and overdamped, i.e., the correlation
function

C(Q)n (t) = ⟨Q̂n(t)Q̂n⟩ (A2)

assumes the form

C̃(Q)n (ω) = [1 + coth(
ω

2T
)]2λn

ωΛn

ω2 +Λ2
n

(A3)

in the frequency domain (C̃(Q)n (ω) ≡ ∫
∞

−∞
C(Q)n (t)e−iωtdt).51 The

reorganization energy λn measures the magnitude of fluctuations,
Λn is the bath relaxation rate (Λ≫ λ defines the assumed fast bath
limit), and T is the temperature.

The Redfield master equation (9) is a perturbative expansion in
λ≪ J, and the dissipative (transport) dynamics thus appear between
delocalized eigenstates ∣εi({q})⟩ of the Frenkel exciton Hamiltonian
(A1) and the dissipative part of Eq. (10), thus, reads

�̆� ({q})∣ρ(t)⟩⟩ =
2N

∑
i,j=1;i≠j

[kεi→εj(∣εj⟩⟨εi∣ρ̂(t)∣εi⟩⟨εj∣

−
1
2
{∣εi⟩⟨εi∣, ρ̂(t)}) − γpd

εiεj ∣εi⟩⟨εi∣ρ̂(t)∣εj⟩⟨εj∣],

(A4)

where {Â, B̂} ≡ ÂB̂ + B̂Â. We omitted for readability the q depen-
dence of the excitonic states, transport rates, and pure dephasing
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rates on the right-hand side of Eq. (A4). Transport rates from the
excitonic state ∣εi({q})⟩ to ∣εj({q})⟩ are given by

kεi→εj({q}) =
N

∑
n=1

C̃(Q)n (ωεiεj)∣⟨εi∣B̂†
nB̂n∣εj⟩∣

2
, (A5)

where ωεiεj({q}) is the electronic energy gap between eigenstates
∣εi({q})⟩ and ∣εj({q})⟩.

The pure dephasing rates γ pd
εiεj({q}) are given by

γpd
εiεj({q}) =

1
2

N

∑
n=1

C̃(Q)n (0)[⟨εi∣B̂†
nB̂n∣εi⟩ − ⟨εj∣B̂†

nB̂n∣εj⟩]
2
, (A6)

where the limit ω→ 0 of Eq. (A3) reads

C̃(Q)n (0) =
4Tλn

Λn
. (A7)

The fast bi-exciton bath coordinates Q̂nm induce transport and
fluctuations in complete analogy with Eqs. (A1)–(A7) (see Ref. 8).
No bi-exciton transport is, however, possible for the presented dimer
with a single bi-exciton state, and they thus solely induce trivial pure
dephasing. The latter makes no appreciable difference to the line
shapes and has thus been set to zero in the presented simulations
of Figs. 2–7.

EEA is added to the model phenomenologically as unidi-
rectional transport between excitonic manifolds differing in one
quantum of excitation when adjacent chromophores are occupied,

𝒜 ∣ρ(t)⟩⟩ =
N−1

∑
i=1

kA
i ([L̂

(−)

i ρ̂L̂(−)†i −
1
2
{L̂(−)†i L̂(−)i , ρ̂(t)}]

+ [L̂(+)i ρ̂L̂(+)†i −
1
2
{L̂(+)†i L̂(+)i , ρ̂(t)}]). (A8)

The operators

L̂(−)i ≡ B†
i+1Bi+1Bi (A9)

and

L̂(+)i ≡ B†
i BiBi+1 (A10)

describe, respectively, EEA with rate kA
i at site i (L̂(−)i ) or i + 1

(L̂(+)i ), if two excitons are present at sites i and i + 1.

APPENDIX B: GAUSSIAN APPROXIMATION
TO 1Q-2Q STATISTICS

The 1Q-2Q statistics defined in Eqs. (33) and (34) can
be approximated by a bivariate Gaussian distribution for small

fluctuations. To obtain analytical expressions, we expand eigenen-
ergies (28) linearly in stochastic coordinates {q(t)},

ωαg(t) = ω̄αg + δE1(t) + δE2(t) + δΔ(t),

ωa2g(t) ≈ ω̄a2g +
δE1(t) + δE2(t)

2
+

Eδ

2
δE1(t) − δE2(t)
√

E2
δ + 4J2

,

ωαa2(t) = ωαg(t) − ωa2g(t)

≈ ω̄αa2 +
δE1(t) + δE2(t)

2

−
Eδ

2
δE1(t) − δE2(t)
√

E2
δ + 4J2

+ δΔ(t).

(B1)

We allow for the general dimer model with small site energy
difference

Eδ ≡ Ē1 − Ē2, (B2)

with fluctuation profiles

δE1,2(t) = E1,2(t) − Ē1,2,

δΔ(t) = Δ(t) − Δ̄,
(B3)

and mean transition energies

ω̄αg ≡ Ē1 + Ē2 + Δ̄,

ω̄a2g ≡
Ē1 + Ē2

2
+

√

(
Eδ

2
)

2
+ J2,

ω̄αa2 ≡
Ē1 + Ē2

2
−

√

(
Eδ

2
)

2
+ J2 + Δ̄.

(B4)

This general dimer model with small site energy difference Eδ
provides insight into certain line shape singularities treated in
Eq. (39).

As the Gaussian character of the distributions is maintained
under linear transformations (B1), we finally arrive at the following
bivariate Gaussian distributions for the 1Q-2Q statistics:

P̃±(Ω1,±, t2, Ω3,±)

≈
1

2πb±(t2)
(exp)−

Ω2
1,±σ2

±,Ω3
+Ω2

3,±σ2
±,Ω1
− 2Ω1,±Ω3,±ξ±(t2)

2b2
±(t2)

,

(B5)

with the definitions for the negative
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Ω1,− ≡ Ω1 − ω̄αg ,
Ω3,− ≡ Ω3 − ω̄a2g ,

σ2
−,Ω1 ≡ Σ(2)(0) + Σ(1)11 (0) + 2Σ(1)12 (0) + Σ(1)22 (0),

σ2
−,Ω3 ≡

1
4

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1+
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

Σ(1)11 (0)+2Σ(1)12 (0)(1−
E2

δ
E2

δ + 4J2)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

Σ(1)22 (0)
⎞
⎟
⎟
⎠

,

ξ−(t2) ≡
1
2

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Σ(1)11 (t2) + 2Σ(1)12 (t2)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Σ(1)22 (t2)
⎞
⎟
⎠

,

b2
−(t2) ≡ σ2

−,Ω1 σ2
−,Ω3 − ξ2

−(t2)

(B6)

and positive

Ω1,+ ≡ Ω1 − ω̄αg ,
Ω3,+ ≡ Ω3 − ω̄αa2 ,

σ2
+,Ω1 = σ2

−,Ω1 ,

σ2
+,Ω3 ≡

1
4

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1−
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

Σ(1)11 (0)+2Σ(1)12 (0)(1−
E2

δ
E2

δ + 4J2 )

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

Σ(1)22 (0)
⎞
⎟
⎟
⎠

+ Σ(2)(0),

ξ+(t2) ≡
1
2

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Σ(1)11 (t2) + 2Σ(1)12 (t2)

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
Eδ

√
E2

δ + 4J2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Σ(1)22 (t2)
⎞
⎟
⎠
+ Σ(2)(t2),

b2
+(t2) ≡ σ2

+,Ω1 σ2
+,Ω3 − ξ2

+(t2)

(B7)

2D peaks. Equation (B5) can be formally identified with the absorp-
tive line shapes if the slow (στ ≫ 1) diagonal spectral fluctuations
are the only relevant dynamical process, i.e., when transport and
annihilation dynamics are neglected. The time-dependent angle of
the principal axis of elliptic contours (B5) reads

tan[2Φ±(t2)] =
2ξ±(t2)

σ2
±,Ω1
− σ2
±,Ω3

. (B8)

The FCL and BCL of the positive and negative peak are obtained
with

∂

∂Ω1
P̃±(Ω1, t2, Ω3) ∣

Ω1=ΩBCL
1

= 0,

∂

∂Ω3
P̃±(Ω1, t2, Ω3) ∣

Ω3=ΩFCL
3

= 0,

(B9)

and read

[
Ω3,±

ΩBCL
1,±
]

−1

=
ξ±(t2)

σ2
±,Ω3

,

[
ΩFCL

3,±

Ω1,±
] =

ξ±(t2)

σ2
±,Ω1

.

(B10)

The diagonal (major) and anti-diagonal (minor) semidiameter of
elliptical contours (B5) are given by

σ2
diag,± =

σ2
±,Ω1
+ σ2
±,Ω3

2
+

¿
Á
ÁÀ
(

σ2
±,Ω1
− σ2
±,Ω3

2
)

2

+ ξ2
±(t2),

σ2
anti−diag,± =

σ2
±,Ω1
+ σ2
±,Ω3

2
−

¿
Á
ÁÀ
(

σ2
±,Ω1
− σ2
±,Ω3

2
)

2

+ ξ2
±(t2),

(B11)

respectively.
The limit of Eδ = 0 is used to derive Eqs. (35), (36), (38), (41),

(42), and (46)–(48) of the main text. The full Ēδ ≠ 0 form is helpful to
approach the line shape singularity for γ = 0 at t2 = 0 fs [see Eq. (39)].
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