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Abstract
The kinetic model of an open system, which embodies an instability in long
time regime behaviour, is referred. This result questions some approximations
which are standardly used in open system treatments. The deficiency in kinetic
treatments was recently referred to as mainly a mathematical curiosity [1];
however, in the present work the application for a physically comprehensive
situation is shown. We simplified the previously treated model, which
enables us to proceed easily with just pen and paper and to omit numerical
modelling whose justification causes difficulties to the reader. We draw some
consequences on the found instability, both with respect to the perturbative
origin of kinetic equations and also concerning the very philosophy of physical
modelling.

PACS numbers: 05.30.−d, 03.65.Ca

1. Introduction

The subject of the present paper is new results questioning the stability of solutions to kinetic
equations. Kinetic equations are widely used in solid state or statistical physics in modelling
transfer processes including relaxation phenomena, the influence of external fields, etc. This
concerns a great number of physical theories appropriate for different physical regimes of
interest such as the Boltzmann equation [2], the Fokker–Planck equation [3, 4], the Pauli
master equation [5] or its generalized versions introduced independently in different forms
by Zwanzig and Mori [6, 7], etc. The general mathematical structure of these theories is the
set of differential or integro-differential equations (of first order), which determines the time
evolution of quantities of interest. In the easiest case we meet a time independent Markov
process (without memory), however, otherwise the equations may contain time dependences
in coefficients (for example, dependence on external fields), memory terms (time nonlocal
equations) or inhomogeneous terms or nonlinearity.
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Instabilities or chaotic behaviour in the case of complicated nonlinear equations is surely
not very surprising. Below, we deal with the easiest form of kinetic equations—the set
of linear differential equations with constant coefficients. The specific topic of the present
work is scrutiny of steady state stability, including that of the attractor nature of the steady
state. Let us make some comments here on how this treatment is related to other types
of mathematical structures which are also used in physically similar treatments, and about
physical consequences of this work. Time-local and memory-including theories of Markov
processes are related in general (for the general mathematical theory, see for example [8]) and
also explicit equivalence for specific types of equations stemming from the Liouville equation
could be found [9, 10]. The goal of the cited works is to argue that memory for Markov
processes can be integrated into time local coefficients. In addition, we are interested in steady
state and infinite time asymptotics. Coefficients (in an evolution matrix) often turn into time
independent ones in the infinite time region [11, 12]. Some kind of Markov approximation
here becomes exact. This provides the connection with our work. The influence of external
fields is a further property that can often be related to our topic of interest.

The kinetic equations have their origin in formal identities, which turn fundamental
microscopical physical laws into differential equations determining the time evolution of
macroscopic quantities available in experiments. For practical reasons, the exact formal
identity needs to be approximated by calculation of leading terms of the Taylor series in some
chosen perturbational parameter for rate coefficients of master equations, or similarly by a cut
in the BBGKY hierarchy in the case of the Boltzmann equation. Consequently, the kinetics
models are an approximation to an impossible full treatment. It is quite usual to use the
approximation of the second order in coupling to uncontrolled degrees of freedom, which
enables us to incorporate connected relaxation phenomena.

The time evolution of ‘quantities of physical interest’ is then solved, following the
particular kinetic equation. Formally, the validity of all these approximations of perturbational
origin is limited to the time axis. On the other hand, these are the steady state and the asymptotic
limits which are of greatest physical importance. Otherwise well applicable theory is thus
asked to provide reasonable results also for this time region. Expected results such as the
Boltzmann distribution were found in the simplest kinetic models, which gave physicists a
strong belief in the general applicability of the particular kinetic theory. The limitation of the
perturbative treatment is underestimated by the statement that small changes of coefficients
cannot change results of numerical studies in very dramatic way, which is usually considered
as ‘physically reasonable’. However, this ‘statement’ is not true. We want to show that such
a difficulty is more frequent in numerical kinetic modelling than is usually considered. This
is by no means only of mathematical interest, a related situation was noted, e.g., in [13]; also,
this paper has its birth from the sequence of papers cited below.

Recently we pointed out (in [1]) that some mathematics connected with kinetic models
does not guarantee the appropriate description in the long time region. In particular, the solution
to the second order kinetic equation, which is proved to approximate the right density matrix
in the sense of Davies theorems [14, 15], is instable to potential higher order contributions
to rate coefficients. The arguments were developed on the background of the treatment of a
relatively simple model consisting of two sites with vibrational levels. This calls for further
simplification of the model and physical comprehension of the stated arguments. It is just
the goal of this work and we would like to warn the reader against unexpected features
encountered in this problem. When one incorporates (according to his/her opinion) all the
important physical processes into a kinetic model, attention must be also focused on the
stability of the solution. In particular, the question is which part of the results is guaranteed
and what is only a belief (and contingently only an unjustified belief). In the case when
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the resulting steady state cannot be confronted with well established, e.g., thermodynamical
laws, the result of thus questionable simulation may seem to be quite good. Sometimes belief
in the second order approximation results lies in sophisticated mathematical methods which
pretend to give a ‘general’ proof of correctness of the second order results without any realistic
treatment of the stability, case by case. Such methods might, regardless of their mathematical
validity and usefulness, leave wide scope for speculations about their credibility in concrete
applications, in some important features of the solution, such as in our model from [1].

The treated model stems from open kinetic models in the strong coupling regime, which
was investigated in [16, 17] (and citations therein). The regime was formally described
by modified Davies theory [18]. The authors of [17] have found some surprising features
of the asymptotical solution where it is argued that beyond the weak coupling limit, their
system (according to calculation) does not follow the canonical distribution in the long time
domain. We show that their conclusion had no rigorous mathematical ground, and some of
their statements need to be proved with additional mathematical care. Moreover, the very easy
form of the present model enlightens the physical origin of such a result.

We outline in the present work a calculation similar to [16, 17] and show that attachment of
an additional process, which is formally infinitely slower, changes the asymptotic in a dramatic
way. This idea is presented on a simple model. All the calculations are done manually and the
reader is invited to follow them. The reader is also invited to think how the referred problems,
which one may consider as clear or quite trivial, may become forgotten. This is in particular
important when a complicated model is investigated whose analytical treatment is impossible,
but where only computer simulations are at hand.

2. Model

A four site open system is described by a Hamiltonian

H = ε
(
c
†
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†
3c3

)
+ J

(
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†
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)
+
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. (1)

We measure energy in units of h̄. The Hamiltonian describes a four site system where creation
c
†
i and annihilation operators ci are each related to the ith site, with three transfer channels, two

of them being bath induced and the remaining one being coherent. The system (1) is related
to the recently reported one, if the vibrational structure over each site, introduced in [1], is
limited to the ground level and the first excited level. As long as we consider one particle only,
there is no necessity to introduce (anti)commutational relations between these operators. The
dynamics of the system is dominated by bath induced transfer channels between 1–2 and 3–4
sites and the coherent transfer channel 2–3. B

†
k, Bk are creation and annihilation operators

of the kth bath phonon mode (fulfilling the boson commutational relation), and G
(i−j)

k are
coupling constants of the system–bath interaction. Parameter J describes the strength of the
coherent channel.

We do not allow any interference between the bath-induced channels 1–2 and 3–4, which
means fulfilling conditions such as∑

k
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(3−4)
k T rbath

(
ρbathB
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) = 0.

This can be generally fulfilled if one considers that the particular transfer channels are induced
by different phonon modes

G
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k G

(3−4)
k = 0.
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One can treat this Hamiltonian using various schemes. Firstly, it is possible to think about
different regimes, according to different magnitudes of the coefficients in the Hamiltonian.
Here we are interested in the regime where it is appropriate to treat the J- and bath-induced
transfer channels as a perturbation. We emphasize that this choice does not correspond to the
so-called van Hove limit [19, 20]. One can diversify the physical interpretation of Hamiltonian
(1) and a chosen perturbation scheme. One can consider the coherent channel as a slow internal
motion treated according to [18], but it may also represent constant or periodical external field
influence.

Various constructions of kinetic equations can also be applied. We restrict ourselves
to those which respect the chosen mathematical structure and the physical regime. Though
here also physicists use various formalisms, one may obtain our results using the Nakajima–
Zwanzig identity (in the Born–Markov approximation) [6], the Tokuyama–Mori equation (in
its standard second order formulation) [7] and also the Haken–Strobl–Reineker parametrization
[21, 22], all of which lead here to formally the same master equation:

dρij

dt
=

∑
{kl}

W{ij},{kl}ρ{kl} (2)

where vector ρ is organized in the following way

ρT = (ρ11, ρ22, ρ33, ρ44, Re ρ23, Im ρ23, Re ρ12, Im ρ12, Re ρ13,

Im ρ13, Re ρ34, Im ρ34, Re ρ24, Im ρ24, Re ρ14, Im ρ14).

We call matrix W the evolution matrix. W(2) is the second order approximation of W . It reads

W(2) =




A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D


 (3)

where

A =




−�↓ �↑ 0 0 0 0
�↓ −�↑ 0 0 0 −2J

0 0 −�↓ �↑ 0 2J

0 0 �↓ −�↑ 0 0

0 0 0 0 −�↑+�↓
2 −ε

0 J −J 0 ε −�↑+�↓
2




(4)

B =




−�↑+�↓
2 ε 0 −J
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2 J 0

0 −J −�↓ 0
J 0 0 −�↓


 (5)

C =




−�↑+�↓
2 ε 0 J

−ε −�↑+�↓
2 −J 0

0 J −�↑ 0
−J 0 0 −�↑


 (6)

D =
(
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2 ε
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2

)
. (7)
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Here
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The equality of the coefficients for 1–2 and 3–4 transfer is our additional assumption, which
cannot be deduced from (1). (The potential discussion concerning imaginary memories
is excluded by the demand that the density of phonons is symmetrical around ε. However,
neither can such terms change any conclusion given below.) Note that J, �↑, �↓ are considered
as perturbations of the same magnitude, proportional to the parameter λ2

J, �↑, �↓ ∝ λ2. (9)

(The reason for this proportionality is only consistency with the standard perturbational order
of the bath-induced transfer channels.)

The steady state is given by the condition∑
{kl}

W{ij},{kl}ρ{kl} = 0. (10)

We now calculate the complete spectrum of the evolution matrix. Firstly, this enables us to
show that the steady state is also the unique asymptotic state of this equation. Furthermore, we
will argue that the solution has no apparent deviant feature. Last but not least, in section 4, we
show that in a careful treatment one can indicate, in this spectrum, the instability calculated
below.

The evolution matrix was arranged so that it has a quasidiagonal structure. We have to
calculate a characteristic equation. After a bit of algebra (we must calculate determinants of
submatrices of maximal order 6) and rearranging resulting terms, we obtain1
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2

)2
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]
. (11)

Twelve roots can be calculated directly from the quadratic terms. What remains is a polynomial
equation of fourth order. The roots can in principle also be extracted using the Cardano formula,
but it does not provide an easy survey. Instead, we inspect the behaviour in the λ → 0 limit
1 The terms are ordered according to the ordering of submatrices; one submatrix is one row.
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of the perturbational parameter. This analysis and the calculation of 12 exact eigenvectors are
provided in appendix A.

In conclusion, there is only one steady state and, at least not for small values of parameter
λ, all the other eigenvalues of matrix (3) have negative real parts, i.e. connected terms in time
evolution simulation disappear in infinite time and the steady state is also the asymptotical
one. Because of the finite dimension of the matrix, there is a region surrounding λ = 0
where evolution has infinite time asymptotics given by (10), so one can limit oneself to this
region without complications. For very high values of the parameter λ, the model need not
have the correct behaviour in accordance with the general inapplicability of the perturbational
treatment for this case. It is worth noting that the zero eigenvalue was obtained purely from
the first submatrix A. The others have nonzero determinants and thus the only solution of the
steady state condition must be zero for associated elements in the density matrix.

The solution to steady state condition (10) is calculated concerning the normalization
condition ∑

i

ρii = 1. (12)

It yields

ρ11 = �2
↑

(�↑ + �↓)2
ρ22 = ρ33 = �↑�↓

(�↑ + �↓)2
ρ44 = �2

↓
(�↑ + �↓)2

ρi �=j = 0.

(13)

We specifically note the equality in population at sites 2 and 3.
The relaxation does not steer for the canonical asymptotics here as the system need not be

in thermodynamic equilibrium. The 2–3 channel is elastic which implies 2–3 symmetry and
consequent equality ρ22 = ρ33. This is a consequence of omitting the van Hove limit. The
potentially external character of the term J can be comprehended as responsible. Attention
can also be focused on dissolution of the van Hove limit and strong coupling regime in
[16, 17]. In fact, we obtained an exactly similar result as in [17]. There is no evident internal
collapse in these calculations.

3. Perturbation

In this section a small perturbation of model (1) is introduced in the form of an incoherent
transfer channel between sites 2 and 3. The new terms in evolution matrix may be quite small
with respect to the others obtained from the previous consideration. Construction of the terms
is fully analogous to the previous case. Formally, a change can be included in the Hamiltonian:

δH =
∑

k

G
(2−3)
k

(
Bkc

†
3c2 + B

†
kc

†
2c3

)
.

We present a new corrected evolution matrix; the effectiveness of the new 2–3 channel is
measured by rate coefficients g↑, g↓:

A =




−�↓ �↑ 0 0 0 0
�↓ −�↑ − g↑ g↓ 0 0 −2J

0 g↑ −�↓ − g↓ �↑ 0 2J

0 0 �↓ −�↑ 0 0

0 0 0 0 −�↑+�↓+g↑+g↓
2 −ε

0 J −J 0 ε −�↑+�↓+g↑+g↓
2




(14)
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B =
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2 J 0
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 (15)

C =
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2 −J 0
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D =
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2

)
.

(16)

Now we calculate the stationary state of problem (16). The assumption that λ is so small that
submatrices B, C and D are regular holds and so the stationary condition applied here has the
trivial solution only. Then, one gets the result after easy algebra:
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2

)
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2

)
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+
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↓

{
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(
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2

)
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}

Re ρ23 = C
−2εJ (g↓ − g↑)�↓�↑
(�↑ + �↓ + g↑ + g↓)

Im ρ23 = CJ(g↓ − g↑)�↓�↑

where C is a normalization constant to be deduced from (12):

1

C
= 2 ∗ J 2(�↑ + �↓)2 +

(
2ε2

�↑ + �↓ + g↑ + g↓
+

�↑ + �↓ + g↑ + g↓
2

)

× (�↑ + �↓)(�↑g↓ + �↓g↑).

We are interested especially in the ratio of the populations on sites 2 and 3. The reason
for this specific interest becomes apparent later:

ρ22

ρ33
=

g↓
(

2ε2

�↑+�↓+g↑+g↓
+ �↑+�↓+g↑+g↓

2

)
+ 2J 2

g↑
(

2ε2

�↑+�↓+g↑+g↓
+ �↑+�↓+g↑+g↓

2

)
+ 2J 2

. (17)

The term ‘small perturbation’ has to be formalized in order to talk about the instability. We
have worked out this point in two different ways; the first of these is submitted mainly for a
mathematically oriented reader. We consider g↑, g↓ as proportional to λ4:

J, �↓, �↑ ∝ λ2 g↑, g↓ ∝ λ4. (18)

One may have some objections against this interpretation, stemming from the fact that we did
not provide complete fourth order inspection of the kinetic theory. But here our objective is
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limited. We point out the instability of the result (13) against the fourth order correction, which
is considered to be arbitrary—as a potentiality. We argue that an arbitrary perturbation could
be used to achieve this conclusion. The motivation in this interpretation is in the background
only; in order to get the reader interested, the statement is of mathematical character. One
can also omit here the additional term in Hamiltonian δH , and think of the perturbation as
consisting of higher order terms obtained potentially from the Hamiltonian (1) that are omitted
in standard second order calculation. The results (13) and (16) will be compared in the λ → 0
limit where the perturbational treatment is best verified. (Performing this limit has, of course,
no consequence in connection with the main statement—instability).

In the second interpretation we consider the perturbation to be formally of the second
order, but of small magnitude. We introduce an additional parameter η that measures the
relative power of different transfer channels

J, �↓, �↑ ∝ λ2 g↑, g↓ ∝ ηλ2. (19)

After evaluation of the λ → 0 limit, which gives precise mathematical sense to our calculation,
we consider η to be small, formally limiting it to 0. We shall show that regardless of the
arbitrarily small (but nonzero) magnitude of η, the result (13) is not preserved. In other words,

lim
η→0

ρ(η) �= ρ(η = 0)

where ρ designates here the steady state in the λ → 0 limit. This is the central statement that
we are going to prove. The stability of standard kinetic equations is inspected with respect
to physical processes which were not incorporated into a model in question because of their
low strength (at least from a formal, cursory point of view) and consequent underestimation
of their influence. This point is possibly not so interesting mathematically because the second
order theory holds here, but it seriously questions the straightforward applicability of the
standard kinetics from a physical point of view. Both these interpretations are quite distinct
mathematically and physically. We argue that the unstable behaviour is the internal problem
of the approximation (3) and does not come from the very specialized choice of perturbation
or scheme of treatment. In the next section we make this point clearer.

Performing the announced limits. First interpretation (18):

lim
λ→0

ρ22

ρ33
= lim

λ→0

λ4g↓
(

2ε2

λ2(�↑+�↓)+λ4(g↑+g↓)
+ λ2(�↑+�↓)+λ4(g↑+g↓)

2

)
+ 2λ4J 2

λ4g↑
(

2ε2

λ2(�↑+�↓)+λ4(g↑+g↓)
+ λ2(�↑+�↓)+λ4(g↑+g↓)

2

)
+ 2λ4J 2

= g↓
g↑

.

Second interpretation (19):

lim
η→0

lim
λ→0

ρ22

ρ33
= lim

η→0
lim
λ→0

ηλ2g↓
(

2ε2

λ2[�↑+�↓+η(g↑+g↓)] + λ2[�↑+�↓+η(g↑+g↓)]
2

)
+ 2λ4J 2

ηλ2g↑
(

2ε2

λ2[�↑+�↓+η(g↑+g↓)] + λ2[�↑+�↓+η(g↑+g↓)]
2

)
+ 2λ4J 2

= lim
η→0

g↓
g↑

= g↓
g↑

.

Also other results are identical in both our limits, we refer to them in a short-cut way:

ρ11 = �2
↑g↓

(�↑ + �↓)(�↑g↓ + �↓g↑)
ρ22 = �↓�↑g↓

(�↑ + �↓)(�↑g↓ + �↓g↑)

ρ33 = �↓�↑g↑
(�↑ + �↓)(�↑g↓ + �↓g↑)

ρ44 = �2
↓g↑

(�↑ + �↓)(�↑g↓ + �↓g↑)
(20)

Re ρ23 = 0 Im ρ23 = 0.
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If g↑ �= g↓, then sharp changes appear in solution (13). Equality between these coefficients
was not assumed. We considered the perturbation to be an additional bath-induced channel
which points to g↑ �= g↓. Rather the standard thermodynamics relation

g↓
g↑

= exp βε

may be suggested. Derivation of this statement consists in some additional assumptions about
the initial state of the bath, which are, however, standard. Of course, if one is interested in
the Taylor series structure in higher order expansion of (17), our interpretations are mutually
different, but the general picture is not changed.

We would like to give further warning here. One need not be very surprised because of the
following argumentation. The transfer channel connected with parameter J is in fact also of
fourth order, because its direct application to the density matrix (commutator [J, ρ]) changes
either the ket or bra side of the density matrix only and the comparable process connecting the
diagonal terms in the density matrix is thus of fourth order. Then this new included channel
is comparably as strong as (in the first interpretation) or even stronger than (in the second
argumentation) the first one. We give a twofold counterargument.

1. Nevertheless, formally the coherent process (J-proportional) is included in the second
order. Such a treatment is absolutely standard. Care in this direction becomes difficult or
technically impossible for complicated systems. Moreover, this objection also seriously
questions the concept of the generalized master equation in general, because treatment
of the whole density matrix (of the system) included information about a set of generally
incompatible observables. With respect to a particular measurement (here, for example,
site occupation probability measurements), the other terms unrelated to this measurement
(here off-diagonal matrix elements) always play the role of some kind of memory. So the
apparent difference in the treatment of memories is a general property of the formalism
as far as incompatible measurements on the system are concerned.

2. Intuition in more complicated cases is uncertain and may fail. One may reinspect the
formula (17) with the following scheme

�↑, �↓, J ∝ λ2 g↑, g↓ ∝ λ5

or alternatively

�↑, �↓, J ∝ λ2 g↑, g↓ ∝ ηλ4.

One can see here that in the same limits as above, the instability is still present, though
the perturbation should now be smaller than the fourth order coherent channel. In fact,
the effectiveness of coherent channel transfer is seemingly of a higher order than 4!

4. Indication of instability

We have argued in the previous section that the instability described above is a matter of
internal problem of approximation (3). Despite its reasonable behaviour in the time evolution
simulation which we proved in appendix A, a problematic step has been indicated above and
this problem must be visible purely from the model treatment. In fact, were one not able to
give some indication of the instability of the approximation from itself, the situation would
have been crucial. First, treatment of formally higher order corrections is not well established
in connected theory, and what is worse, it is an extremely difficult task. Furthermore, one
could never (in no finite order of calculation) be sure whether the provided approximation is
already stable. We discuss two points which are connected with our instability and indicate it.
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4.1. Slow decay in spectrum

The simple method enables us to obtain the indication purely from the spectrum of the evolution
matrix of kinetic model (3). What is important from a practical point of view, it works
without principal difficulties also in complicated models by numerical analysis and, further,
an orientational indication can be implemented into a time evolution computer simulation.
Only for simplicity and without any change in physical context, we assume that the number of
linearly independent eigenvectors is equal to the order of the connected evolution matrix. In
particular, in problem (3), this statement is proved, because none of the submatrices has two
identical eigenvalues. The general form of the decomposition of a finite (non-normal) matrix
is then

Wij =
∑

q

ξq(Lq)i(Rq)j

where ξq is the qth eigenvalue and Rq (Lq) is the associated right (left, i.e. usual) row (column)
eigenvector. This decomposition holds good the following normalization:∑

i

(Rq)i(L
′
q)i = δqq ′ .

Kinetic equations conserve total probability, consequently the eigenvalue 0 is always present.
Look at our result in appendix A again. The suspicious eigenvalue is ξ4. In perturbation
scheme (9), there is a proportionality ξ4 ∝ λ6. It is no wonder that this eigenvalue need not
be very stable against considering corrections of order λ4, ηλ2. More generally, let us have,
in our spectrum, an eigenvalue with real part approaching zero (with λ → 0) and proportional
to higher than second power of λ (> 2):

Wij = 0 · (L0)i(R0)j + a1λ
n · (L1)i(R1)j + · · · .

We explicitly emphasize that (Lq), (Rq) are also λ dependent, due to which Wij has terms of
just the second order.

Then one can easily construct the mathematical ‘perturbation’ which causes the instability,
for example

δWij = −λn · (L0)i(R0)j − a1λ
n · (L1)i(R1)j + O(λn)

that changes the stationary state from (L0) to (L1) in the limit.
Of course, not every one of the mathematical ‘perturbations’ is physically interpretable.

Some conditions for the evolution matrix stem from the conservation laws (at least particle
conservation in the case of solid state physics), etc. Nevertheless, the set of possible
perturbations is so large that it surely contains also physically interpretable perturbations.
Our model (16) proves such a possibility. In (3), there is the ‘near-the-zero’ eigenvalue
proportional to the sixth order in λ, so we could choose the perturbation smaller than we have
done. The reciprocal real part of the second smallest eigenvalue (without sign) is connected
with the lifetime of relaxation phenomena. Concluding this subsection, we suggest therefore a
practical indication of this instability—highly increasing lifetime of decay when the parameter
of perturbation is reduced according to the formal scheme of construction of given kinetic
equations.

4.2. Analytical treatment of stationary condition

The very simplicity of the particular model (3) enables the analytical treatment of stationary
condition (10), which respects unknown processes, described potentially in higher order of
the formal theory. This is not a very appropriate method from the practical point of view.
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When a direct explicit resolution is not available (for more complicated or extended problems),
one must take extreme care in computational implementation about numerical errors. The
main reason for introducing this calculation is rather the further understanding of the origin
of the instability for the reader who still has not accepted the presented facts. We need (for
simplicity) to assume that there is a unique asymptotical state of the system for our treatment.
This is because here we will deal with the stability of the zero eigenvector only. The proof
that there is no potential eigenvalue with positive real part (collapse of model) is not provided.
Eigenvalues along the imaginary axes with real part so near to zero that it can approach,
through some perturbation, the imaginary axis are ignored here as well. We look for a solution
of approximation (3) as Taylor series coefficients,

ρ =
∑

n

λnρ(n).

The important difference as compared to the Taylor series of solution (13) is that we explicitly
assume the existence of perturbation of order λ3, respectively ηλ2, which is otherwise arbitrary.
The results which are independent of potential perturbation are only of interest. However, this
is a standard correct perturbational method. Such a treatment gives us only a finite number of
conditions for Taylor coefficients. The condition in the zeroth order enables the calculation of

ρ
(0)

12 = 0 ρ
(0)

14 = 0 ρ
(0)

23 = 0 ρ
(0)

34 = 0

while in the second order

ρ
(0)

13 = 0 ρ
(0)

24 = 0 ρ
(2)

12 = 0 ρ
(2)

14 = 0 Im ρ
(2)

23 = 0

Re ρ
(2)

23 = J
(
ρ

(0)

33 − ρ
(0)

22

)
ρ

(0)

11 = �↑
�↓

ρ
(0)

22 ρ
(0)

44 = �↓
�↑

ρ
(0)

33 .
(21)

The internal problem of the second order approximation (3) becomes clearly apparent.
The zeroth order of the density matrix is not resolved by stationary condition (10). We still
have a two-dimensional subspace (arbitrary ρ

(0)
22 , ρ

(0)
33 ) where the steady state can be found.

The result (13) is the corollary of the implicit assumption of zero effect of the higher order
calculation, not justifiable from the mathematical point of view. One can comprehend that
including a potentially higher order perturbation such as (16) will define the zeroth order
density matrix in the space of our result (21) with a high degree of arbitrariness.

In contrast, the model (16) is stable against further perturbation. We obtain the additional
condition (once, in the order λ4 or respectively ηλ2)

g↑ρ
(0)

22 = g↓ρ
(0)

33

and the zero order of the density matrix is now complete. Therefore, the situation, despite
being unpleasant, is not hopeless. One can indicate the instability, and also ways to improve
the models in question are possible in principle.

5. The van Hove limit

All our previous results were obtained in a way that, though similar to ordinarily used
approximations, is not standard in formal relaxation theory. We introduced perturbational
scheme (9) for calculation of the second order kinetic equation for model Hamiltonian (1)
and gave some physical arguments for this choice. Nevertheless, the standard variant of great
popularity is, of course, the van Hove limit [19, 20]:

J ∝ 1 �↑, �↓ ∝ λ2. (22)

We argue here that the above problem with infinite time asymptotics of the model (1) (in the
second order kinetic equation) is sometimes, in particular cases, also reflected in this well
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understood limit. To see this we introduce the ‘energetic‘ representation in eigenvectors of HS

cII = αc2 − βc3 cIII = αc3 + βc2 (23)

where

α =

√
2

(
1 +

√
1 + 4J 2

ε2

)

2

√
4J 2

ε2 + 1 +
√

4J 2

ε2 + 1

∝ 1 β =
√

2J

ε

√
4J 2

ε2 + 1 +
√

4J 2

ε2 + 1

∝ J

ε
.

Hamiltonian (1) now appears:

H = εc
†
1c1 +

ε

2

(
1 +

√
1 +

4J 2

ε2

)
c†IIIcIII +

ε

2

(
1 −

√
1 +

4J 2

ε2

)
c†IIcII

+
∑

k

{
�kB

†
kBk + G

(1−2)
k

(
Bkc

†
1(αcII + βcIII) + B

†
k

(
αc†II + βc†III

)
c1

)
+ G

(3−4)
k

(
Bk

(
αc†III − βc†II

)
c4 + B

†
kc

†
4(αcIII − βcII)

)}
. (24)

The levels II and III refer to the so-called bonding antibonding states. There are two
bath-induced channels between levels 1, II and III, 4 respectively, in analogy with the previous
treatment in the site representation. The difference is that there is no coherent transfer term
in the energetic representation; on the other hand, two weak bath-induced channels between
levels 1, III and II, 4 appeared. The strength of these channels is proportional to (JG)2, so this
term is in the second order kinetic theory of relevance in the van Hove limit only. (The region
of physical applicability of (22) does not contain the regime specified before in connection
with (9).) These channels cause transitions for the short time regime; nevertheless, both
channels lie off the energy shell, so for the long time regime this transfer is forbidden. Then
the second order kinetic theory with integrated memory such as [7] in the asymptotic region
forbids all transitions between pairs of levels 1 + II and of levels III + 4. The asymptotical
stationary condition then has two linearly independent solutions.

Nevertheless, c
†
1c1 + c†IIcII does not commute with the full Hamiltonian (24), it is not an

integral of motion. Consequently, one cannot use the long time (Born–Markov) approximation
when looking for time asymptotics—the result may also depend on short time transient effects.
The result obtained in this way cannot also formally guarantee the stability of the treatment
as above. In appendix B we give the complete second order kinetic equation and its solution
in the van Hove scheme. The solution (B6) of stationary condition (10) shows just the same
asymptotic state of the density matrix (and potential instability) as (21).

Here we deal with quite a real physical problem: consideration of whether respective
levels are isolated and the transfer is strictly forbidden, which suggests the ordinary energy
conservation law, or a limited value of electron density can be still transferred, following the
fact that the energy conservation law cannot be applied at very short times (virtual processes).
In reality, higher order processes can exist of the type of two consequent transitions which
must be, however, interpreted as virtual ones. The point is that the energy conservation law
then applies between the initial and final states and not for each individual sub-transition that
could be, by this law, even formally forbidden (virtual uphill transfers could be connected
with just phonon emission). The significance of the van Hove limit excluding such step-like
processes is also questioned here.
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6. Physical consequences and conclusions

We pointed out an unpleasant consequence of approximative description in kinetic modelling
of open systems. We used a particulary simple model in order to comprehend the unstable
behaviour found recently [1] while discussing some conclusions of earlier papers [16, 17]. In
fact we found a paradigmatic situation, which is of wider relevance, and accompanies kinetic
modelling in general.

We introduced a four level system whose dynamics was described in correspondence with
broadly accepted methods.

The full analysis of the spectrum of the transfer matrix revealed ‘a slow decay to the
steady state’ of the sixth order in formal perturbational parameter λ. This and also the formal
analytical inspection given in subsection 4.2 connect both particular schemes (18) and (19)
together, implying that the above deficiency is a general property of the particular kinetic
model. As similar care is not usual in standard modelling, its results could be potentially
questioned.

A few words need to be mentioned concerning overcoming the described deficiency.
In our particular case, however, there is no simple way to get credible results without either
difficult incorporative description of the previously omitted processes following from formally
higher order contributions from subsequent exact theoretical concepts, or a subtle work in the
construction of the entering Hamiltonian. On the other hand, in many particular cases some
conclusions can also be proved [14], whenever some attention is held. Therefore, we insist on
careful proofs of the particular results, rather than waste effort in general attempts to overcome
the deficiency, irrespective of particular interests and invention of users, or refer to cases that
are similar in the author’s opinion.

The present work left out considerations about interesting real physical properties of the
introduced model. However, we point out that it embodies some paradigmatic features. It is
one of the simplest models considering weak coherent communication between two sites, and
the phenomenon of decoherence of comparable strength, connected with channels attached to
the dimer. Significant difficulties in establishing kinetics also in the van Hove limit call for
interesting investigation, with consequences we do not dare anticipate.
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Appendix A. Detailed analysis of spectrum

Determination of the 12 eigenvalues does not meet with problems, because these are the roots
of quadratic polynoms. In addition, we would mainly like to know signs of real parts of the
eigenvalues, at least in the limit λ → 0. Thus, we reduce complicated results into the Taylor
series at least to the order which gives the sign:

ξ1 = 0 ξ2 = −�↑ − �↓

ξ7 = −i
ε

2
− 3�↓ + �↑

4
+ i

√
ε2

4
+ iε

�↓ − �↑
4

− (�↓ − �↑)2

4
+ J 2 ≈ −�↓
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ξ8 = −i
ε

2
− 3�↓ + �↑

4
− i

√
ε2

4
+ iε

�↓ − �↑
4

− (�↓ − �↑)2

4
+ J 2 ≈ −iε − �↓ + �↑

2

ξ11 = −i
ε

2
− 3�↑ + �↓

4
+ i

√
ε2

4
− iε

�↓ − �↑
4

− (�↓ − �↑)2

4
+ J 2 ≈ −iε − �↑ + �↓

2

ξ12 = −i
ε

2
− 3�↑ + �↓

4
− i

√
ε2

4
− iε

�↓ − �↑
4

− (�↓ − �↑)2

4
+ J 2 ≈ −�↑

ξ15 = iε − �↓ + �↑
2

ξ9 = ξ∗
7 ξ10 = ξ∗

8 ξ13 = ξ∗
11 ξ14 = ξ∗

12 ξ16 = ξ∗
15.

Further eigenvalues are roots of the fourth order polynomial obtained from the submatrix A.
Though there is a formula which enables explicitly to extract the roots—the so-called Cardano
formula—we do not use it because of its complicated form, and we only determine leading
terms of the limit case λ → 0 using the Taylor series. (This point provides no additional
assumption about analytical structure of this dependence, all the results can be proved using
mean value theorem.)

ξ3 ≈ −�↑ − �↓ ξ4 ≈ −J 2(�↑ + �↓)

ε2

ξ5 ≈ iε − �↑ + �↓
2

ξ6 = ξ∗
5 .

Note that the complex square root used in the above formulae is defined in the upper
half-plane of the complex plane (e.g. Im √ � 0 ).

Appendix B. Time asymptotical solution of the second order kinetic equation of model
in van Hove limit

We start from (24) and in the van Hove perturbational scheme (22). Organization of column
vector of the density matrix is as follows:

ρT = (ρ11, ρII,II, ρIII,III, ρ44, Re ρII,III, Im ρII,III, Re ρ1,II, Im ρ1,II, Re ρ1,III,

Im ρ1,III, Re ρIII,4, Im ρIII,4, Re ρII,4, Im ρII,4, Re ρ14, Im ρ14).

Kinetic equations (2) obtained here from, e.g., [7], are

W(2) =




A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D


 (B1)

where

A =




−�v
↓ �v

↑ 0 0 θ�v
↑ 0

�v
↓ −�v

↑ 0 0 θ�v
↓ 0

0 0 −�v
↓ �v

↑ −θ�v
↑ 0

0 0 �v
↓ −�v

↑ −θ�v
↑ 0

θ�v
↓

2 − θ�v
↑

2
θ�v

↓
2 − θ�v

↑
2 −�v

↑+�v
↓

2 −ε − 2

0 0 0 0 ε + 2 −�v
↑+�v

↓
2




(B2)
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B =




−�v
↑+�v

↓
2 ε + 

θ�v
↓

2 0

−ε −  −�v
↑+�v

↓
2 0

θ�v
↓

2

− θ�v
↑

2 0 −�v
↓ −

0 − θ�v
↑

2  −�v
↓


 (B3)

C =




−�v
↑+�v

↓
2 ε +  − θ�v

↑
2 0

−ε −  −�v
↑+�v

↓
2 0 − θ�v

↑
2

θ�v
↓

2 0 −�v
↑ −

0 − θ�v
↑

2 + −�v
↑


 D =

(
−�v

↑+�v
↓

2 ε

−ε −�v
↑+�v

↓
2

)
(B4)

where

 = ε

2

(√
1 +

4J 2

ε2
− 1

)

θ = β

α
= 2J

ε

(
1 +

√
1 + 4J 2

ε2

)

�v
↑ = 2πα2

∑
k

[
G

(1−2)

k

]2
δ (ε +  − �k) T rbathρbath

(
B

†
kBk

)
(B5)

= 2πα2
∑

k

[
G

(3−4)
k

]2
δ
(
ε +  − �k

)
T rbath

(
ρbathB

†
kBk

)
�v

↓ = 2πα2
∑

k

[
G

(1−2)
k

]2
δ
(
ε +  − �k

)
T rbath

(
ρbathBkB

†
k

)
= 2πα2

∑
k

[
G

(3−4)

k

]2
δ(ε +  − �k)T rbath

(
ρbathBkB

†
k

)
.

One can verify that stationary condition (10) is satisfied by density matrix:

ρ = C

(
�v

↑
�v

↓ + �v
↑
c
†
1c1 +

�v
↓

�v
↓ + �v

↑
c†IIcII

)
+ (1 − C)

(
�v

↑
�v

↓ + �v
↑

c†IIIcIII +
�v

↓
�v

↓ + �v
↑
c
†
4c4

)
(B6)

with arbitrarily chosen constant C ∈ (0, 1).
This proves the statements of main text.
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