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We present a computational model for the spectra of molecular aggregates with signatures of vibronic
progression. Vibronic dynamics is implemented by coupling the dynamics of Frenkel excitons with
underdamped vibrations. Vibrational dynamics includes linear damping resulting in the exponen-
tial decay and quadratic damping inducing subexponential or power law relaxation and increasing
vibrational decoherence as demonstrated on lineshapes of the absorption spectrum. Simulations of
the third-order coherent response account for bath reorganization during excitonic transport, which
allows us to study the line-shape evolution of cross peaks of 2D spectra. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999680]

I. INTRODUCTION

Recent developments of the ultrafast optical technology
provided new insights into the microscopic dynamics of exci-
ton transport through molecular aggregates. Novel nonlinear
experiments, such as two-dimensional (2D) spectroscopies in
visible domain,1–3 resolved discrepancies arising between dif-
ferent experiments on the same molecular systems (e.g., often
inconsistent estimates for intermolecular forces deduced from
the absorption spectrum and from the pump-probe kinetics)
and restored some older debates.

The role of the electronic and vibrational coherences in
the electronic transport4,5 and the differences between the
Förster regime6 and Redfield regime of transport7 has been
at the center of the ongoing debate. These new experiments
on organic dyes,8,9 light harvesters,10 and artificial molecular
aggregates11 often revealed the important role of underdamped
vibrations in electronic transport. In other cases, while the
effect of underdamped vibrations on transport rates was found
minor or moderate, the vibronic modulation of electronic tran-
sitions was a key ingredient for explaining beatings of 2D
spectra.12–14 At the same time, however, the simulations of the
interplay of vibrational and electronic dynamics constitute a
serious computational challenge that has been approached at
the various levels of theory.15

Simulations of nonlinear coherent response and 2D spec-
tra of transporting multichromophoric electronic systems were
pioneered by Zhang et al.16 Their algorithm is based on diag-
onalization of the Frenkel exciton Hamiltonian describing
dynamics of electronic degrees of freedom17–21 and partition-
ing vibrationally (or solvent) induced fluctuations of excitons
into a diagonal part modifying eigenfrequencies and an off-
diagonal part modifying eigenstates. The former part induces
dephasing between excitons, the dynamics of which is respon-
sible for lineshapes, and is usually accounted for by the

a)Electronic mail: sanda@karlov.mff.cuni.cz

second cumulant.22 The latter results into the exciton trans-
port, the dynamics of which is standardly described by using
generalized master equations,23 generically of the Redfield
type, as the present algorithm is naturally perturbative in the
electron-vibration coupling.

While authors differ in the choice of the specific trans-
port formalism24 (e.g., to reach the Förster regime) and in the
way how the transport and the dephasing are combined into
the 2D lineshapes, the general strategy of Zhang et al. became
a widely accepted standard for aggregates counting from a
few to tens of molecules. Alternatives are at hand for very
large or very small systems. For extended aggregates, made
of hundreds of constituents, lineshapes of individual excitons
are neglected and complex dynamics of multiple coherences
is eventually factorized into a quasiparticle picture.25 In the
opposite limit, explicit representations of fluctuations26,27 can
avoid approximate factorizations of dephasing and transport
and the Förster-Redfield dilemma for sufficiently small sys-
tems. These alternative strategies and later refinements of the
original methods were reviewed in Refs. 28–30.

The algorithm in Ref. 16 works satisfactorily, pro-
vided the vibrational modulation of excitons is broad in
frequencies without sharp peaks in the spectrum. Sharp
peaks signify strongly coupled underdamped vibrations of
which complex interferences with exciton coherences go
beyond the Redfield or Förster type of transport. A proper
study of vibration-electronic entanglement requires the rep-
resentation of some vibrations explicitly, i.e., to diago-
nalize relevant vibrational modes together with electronic
degrees of freedom to get mixed exciton-vibrational (called
vibronic) eigenstates and calculate transport dynamics among
these vibronic states. While implementation is costly for
extended aggregates, it is accessible for the small ones.
After redefining the “system” space from excitonic to
vibronic, the rest of the simulation strategy instituted by
Ref. 16 can be largely maintained. Variants of the vibronic
approach to 2D spectra have been employed by several
authors.31–38
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We report a vibronic dynamical model affordable for
simulations of small molecular aggregates with resolved vibra-
tional structure. Our preliminary calculations addressed the
vibronic kinetics of artificial carotenoid-purpurin dyad11 and
the natural lycopene-chlorophyll complex of Rs. molischi-
anum10 as they combined dimer or trimer excitonic dynamics
with vibrational relaxation. Models of vibrations standardly
assume exponential decay, which results from linear vibra-
tion to bath interaction. The present communication aims to
allow for more general vibrational kinetics. The linear model
is a relic of reduced descriptions of vibrations in excitonic
models, where it allowed for substantial savings of numeri-
cal effort. With an explicit representation of vibronic coor-
dinates, the nonlinear coupling can be introduced at moder-
ate costs. We will demonstrate that this extension allows for
the description of subexponential and power law relaxation
reported in biological systems39–41 and addressed by a variety
of phenomenological descriptions.42–48

We next expand the calculations of kinetics into the com-
plete machinery for calculating optical spectra, both linear and
nonlinear. For the latter, some kind of factorization of dephas-
ing and relaxation dynamics is always required for simulations
along with ideas in Ref. 16. We adopted a simulation proto-
col, which allows phase acquisition to follow the relaxation
pathways and to account for the eigenfrequency correlations
between different periods of a 2D experiment, while remaining
computationally feasible.

This paper is structured as follows. In Sec. II we introduce
a model of vibronic aggregates. System degrees of freedom,
i.e., excitons, and a limited number of underdamped vibra-
tions are separated from a bath of overdamped vibrations.
In Sec. III we introduce the system-bath interaction Hamil-
tonian. Dynamics include the electronic dephasing term and
linear and nonlinear vibrational damping. Dephasing inducing
diagonal (eigenfrequency) fluctuations is distinguished from
transport inducing off-diagonal (eigenstate) fluctuations. In
Sec. IV we specify the effect of the former and describe trans-
port dynamics using the master equation. We demonstrate
the effect of nonlinear damping by predicting the subexpo-
nential or power law dynamics of relaxation. In Sec. V we
take care of dephasing and study their effects on absorption
lineshapes. In Sec. VI we calculate the third-order optical
response by an algorithm that follows the reorganization of
bath modes during transport. The effects of nonlinear damp-
ing on the 2D spectra will be demonstrated. In Sec. VII we
conclude.

II. VIBRONIC AGGREGATE

We consider the optical dynamics of molecular aggregates
with significant vibronic structure. The electronic structure of
each molecule (counted as i = 1, 2, . . . , N) of the aggregate
is modeled by a two-level chromophore (with ground gi and
excited ei levels, exciton creation operator Â†i , and transition
frequency ε i). To describe the third-order coherent response,
only a handful of states of the composed electronic Hilbert
space of aggregates are needed. The relevant part consists
of a ground state |Πigi〉, the manifold of one-exciton states
where a single chromophore is excited |ekΠi,kgi〉 = Â†k |Πigi〉,

and the manifold of doubly excited states |ekelΠi,k,lgi 〉

= Â†kÂ†l |Πigi〉. The exciton dynamics is described by the
Frenkel exciton Hamiltonian

Ĥe = ~
∑

i

ε iÂ
†

i Âi + ~
∑
i,j
i,j

JijÂ
†

i Âj + ~
∑
i,j
i,j

ΞijÂ
†

i Â†j ÂiÂj, (1)

where intermolecular coupling ~Jij is usually approximated by
dipole-dipole force49 and evaluated by using ab initio quan-
tum chemistry.50 Shifts of exciton energies, when ith and jth
molecules are simultaneously excited, shall be accounted by
~Ξij.

Vibronic dynamics arise when certain, strongly cou-
pled and underdamped, vibrations are included into the
Hilbert space. Vibrations are assumed to be local, each of
them is attached to some chromophore, and q̂i,z (p̂i,z) is the
coordinate (momentum) of the zth mode on the ith chro-
mophore. We assume the electronic potential surface Ui,z(q̂i,z)
= 1

2 mi,zω
2
i,z(q̂i,z − di,zÂ

†

i Âi)2 to be harmonic with respect to
nuclear coordinates qi ,z, displaced by di ,z between the elec-
tronic ground and excited surface, whereωi,z is the vibrational
frequency, and mi ,z is the effective mass.

The vibrational Hamiltonian Ĥv =
∑

i,z
p̂2

i,z
2mi,z

+ Ui,z(q̂i,z)
can be diagonalized as

Ĥv =
∑
i,z

~ωi,z(V̂
†

i,zV̂i,z + 1/2), (2)

where V̂†i,z (V̂i,z) are creation (annihilation) operators,

V̂†i,z =

√
mi,zωi,z

2~
(q̂i,z − di,zÂ

†

i Âi) − i

√
1

2mi,zωi,z~
p̂i,z, (3)

defined so as to add a vibrational quantum on the ground or
on the excited state surface.

Thus, local states are products of ground state electronic
wavefunctions gi with well-known wave functions of harmonic
vibrations,

|giΠzni,z〉 =
∏

z

1√
ni,z!

(
V̂†i,z

)ni,z
|0i〉 |gi〉 , (4)

and excited state electronic wavefunctions | ei 〉 with wave
functions of displaced harmonic oscillators,

|eiΠzñi,z〉 =
∏

z

1√
ni,z!

(
V̂†i,z

)ni,z
|0̃i〉 |ei〉 , (5)

where |0i〉 is the vibrational ground state on the electronic
ground state, and | 0̃i 〉 is the (shifted) vibrational ground state
on the electronic excited state surface.

Vibrons are complex electronic-vibrational excitations in
the product Hilbert space composed of both the electronic and
the vibrational degrees of freedom and defined by the system
Hamiltonian

ĤS = Ĥe + Ĥv . (6)

In the absence of coupling, J ij = 0, Hamiltonian (6) is
diagonal in the product basis ⊗i |ψi〉, where |ψi〉 is some vec-
tor listed in Eq. (4) or Eq. (5), |ψi〉 ∈ {|giΠzni,z〉 , |eiΠzñi,z〉}.
This basis is also a convenient starting point for numerical
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implementations in a general situation with Jij , 0. Indeed,
the matrix elements of the coupling term in Eq. (1) are factor-
ized into the Franck-Condon overlap integrals readily imple-
mented along with the rest of the vibronic Hamiltonian (6)
diagonal in that basis. Then, it is subjected to a standard
routine for numerical diagonalization obtaining eigenstates
|α〉 and eigenfrequencies εα (hereafter indexed by Greek
letters),

ĤS =
∑
α

~εα |α〉 〈α| . (7)

Dynamics generated by Hamiltonian Eq. (6) conserves
the number of electronic excitations. Thus, each electronic
manifold can be diagonalized separately. On the electronic
ground state, there is no resonant coupling, the eigenfunc-
tions are direct products |Πi,zgini,z〉 of ground state electronic
wave functions and wave functions of harmonic oscillators
introduced in Eq. (4). These states form the ground state man-
ifold, hereafter denoted as G. Corresponding eigenenergies
are ~

∑
i,z ni,zωi,z. The diagonalization of the states with one

electronic excitation is a complex task; eigenstates are always
obtained by a numeric diagonalization of the corresponding
block of the Hamiltonian. A set of these vibronic states forms
the one-exciton manifold (E). For two-exciton electronic man-
ifold (F), the diagonalization is different for dimers and for
larger aggregates. In a special case of a dimer, eigenstates are
direct products |e1e2Πzñ1,zñ2,z〉 of doubly excited electronic
wave functions and wave functions of displaced harmonic
oscillators with eigenenergies ~ε1 + ~ε2 + ~Ξ12 + ~

∑
z(n1,zω1,z

+ n2,zω2,z). For larger aggregates, the diagonalization of the
second manifold is again numerical. The third and higher exci-
tation manifolds do not enter the calculation of the third-order
response.28

Interaction with the probing laser fields, E(t) will be
treated in a dipole and in Condon approximations and will
be described using the interaction Hamiltonian

ĤI (t) = −(µ̂ + µ̂†)E(t), (8)

where µ̂ =
∑

i µiÂi. Here, µi is the transition dipole moment
between the ground and the excited state of the ith molecule.
Matrix elements

µαβ ≡
∑

i

µi 〈α|Âi | β〉 ,

µ†αβ ≡
∑

i

µ∗i 〈α| Â
†

i | β〉

will be used hereafter. In the present paper, we neglect the
tensorial structure of nonlinear response and consider dipole
moments to be (anti-)parallel as in the most common aggre-
gates. Generalization to arbitrary geometries is straightforward
and is well described elsewhere.51

III. INTERACTION WITH BATH

All other weakly coupled and overdamped vibrations
along with the solvent degrees of freedom shall be included
into the bath and approximated by a set of harmonic oscillators
with the Hamiltonian

ĤB =
∑

k

~ΩkB̂†k B̂k , (9)

where Ωk is the frequency of a k-bath mode, and B̂†k and B̂k

are its creation and annihilation operators, respectively.
Vibrons are modulated through the coupling to the bath.

The exciton-bath coupling

ĤE = ~
∑
k,i

Ωk ιk,i

(
B̂k + B̂†k

)
Â†i Âi (10)

is responsible for exciton dephasing. Modulation of the system
vibrations will be represented by the linear and the quadratic
vibration to bath coupling,

ĤL = ~
∑
k,i,z

Ωk κk,i,z

(
B̂k + B̂†k

) (
V̂†i,z + V̂i,z

)
, (11)

ĤN = ~
∑
k,i,z

Ωkζk,i,z

(
B̂k + B̂†k

) {(
V̂†i,z + V̂i,z

)2
− 1

}
, (12)

respectively. The linear coupling term Eq. (11) is responsi-
ble for exponential relaxation, described as early as 1936
by Landau and Teller when modeling relaxation by colli-
sions in gasses.52,53 Expansion along Eq. (3) suggests that we
correct for the displacement on the electronic excited state
as

ĤL =
∑
k,i,z

Ωk κk,i,z

√
2~mi,zωi,z(B̂k + B̂†k)(q̂i,z − di,zÂ

†

i Âi).

An alternative definition of coupling which neglects the dis-
placement term ∝ di,zÂ

†

i Âi is often used, but the change does
not bring any principal consequences as such a displacement
term can be absorbed into ĤSB,E by the redefinition of coef-
ficients ιk,i → ιk,i −

∑
z κk,i,zdi,z in Eq. (10). Similarly, the

subtraction of “1” in the last factor on the lhs of Eq. (12) can
be omitted, only causing redefinition of zero energy. We choose
a form where vibrational operators become normally ordered
and quadratic coupling thus vanishes at the vibrational ground
state.

The exciton dephasing and linear vibrational term con-
stitute the standard spin-boson model of lineshapes. Without
exciton transport, the decoherence dynamics of indepen-
dent excitons can be exactly solved using closed expres-
sions of the second cumulant54 without the need to represent
underdamped vibrations explicitly. In contrast, the nonlin-
ear damping ĤSB,N goes beyond the standard spin-boson
model. It is responsible for subexponential vibrational relax-
ation and certain line-shape effects as will be demonstrated in
Secs. IV–VI.

Following the strategy in Ref. 16, the interaction Hamil-
tonian ĤSB,

ĤSB = ĤE + ĤL + ĤN , (13)

shall be transformed into an eigenbasis [Eq. (7)] and parti-
tioned ĤSB = ĤD

SB+ĤO
SB into the diagonal part ĤD

SB representing
eigenenergy fluctuations and the off-diagonal part ĤO

SB repre-
senting eigenstate fluctuations. Their effect will be treated in
Secs. IV and V separately.
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IV. VIBRONIC TRANSPORT

The off-diagonal part of interaction Eq. (13) reads as

ĤO
SB = ~

∑
αβ
β,α

∑
k,i

Ωk
*
,
B̂k(ai

αβ ιk,i +
∑

z

v i,z
αβκk,i,z +

∑
z

w i,z
αβζk,i,z) + h.c.+

-
|α〉 〈β| , (14)

where we defined matrices ai
αβ ≡ 〈α | Â

†

i Âi | β〉, v
i,z
αβ ≡ 〈α | V̂

†

i,z +

V̂i,z | β 〉, w
i,z
αβ ≡ 〈α | (V̂

†

i,z + V̂i,z)2 − 1| β 〉.
Its dynamical effect will be accounted for by using the

master equation

d
dt
ρνµ = − i(εν − εµ)ρνµ −

∑
δβ

Rνµ,δβ ρδβ , (15)

where ρνµ ≡ Tr{| µ 〉〈 ν | ρ̂} is the reduced (system) density
matrix in the space of vibrons, and Rνµ,δβ stands for a relax-
ation matrix. As argued by Redfield,7 only certain terms called
secular and obeying

εν − εµ − εδ + εβ = 0 (16)

contribute significantly to the time evolution of the density
matrix. For aggregates, the eigenfrequencies are not system-
atically built so that Eq. (16) can only be obeyed when the
exciton indices are properly paired. For µ = ν, δ = β pair-
ing, i.e., εµ = εν , εδ = εβ , the matrix element Rνν,δδ

describes the population transport from state δ to state ν.
Similarly for ν = δ, µ = β pairing, the matrix element
Rνµ,νµ describes the decay of coherence between states µ and
ν. We adopt this secular approximation by introducing its
characteristic function, Kνµδβ ≡ (1 − δνδ)δνµδδβ + δνδδµβ ,
and neglecting coherence transfers, coherence to transfer
terms, etc. In addition to Redfield’s argumentation based on
relevance, secular dynamics preserves positive semidefinit-
ness of density matrices55 and significantly reduces the
number of Feynman diagrams involved in calculations in
Sec. VI.

The relaxation matrix shall be evaluated to the sec-
ond order in system-bath coupling ĤO

SB, following Refs.
56 and 57,

Rνµ,δβ = Kνµδβ Tr {|δ〉 ρ̂B〈β |

×

∫ ∞
0

dτ e−iL̆0τ P̆L̆eiQ̆L̆0τQ̆L̆(| µ 〉〈 ν | )}, (17)

where we used the following superoperator notation
L̆· ≡ 1

~ [ĤS + ĤO
SB + ĤB, ·], L̆0· ≡

1
~ [ĤS + ĤB, ·], Q̆

= 1 − P̆, and where the Argyres-Kelly projector58 P̆·
≡

∑
α,γ |α〉 〈γ | Tr{|γ〉 ρ̂B 〈α |·} accounts for the canonical bath

density matrix

ρ̂B =
e−ĤB/(kBT )

TrB{e−ĤB/(kBT )}
(18)

at temperature T. We next evaluate Eq. (17). The rate constant
for transport is (δ , ν)

Rνν,δδ = −2
∑

i

ai
νδai

δν [(1 + N(εδ − εν))Ai(εδ − εν)

+N(εν − εδ)Ai(εν − εδ)]

−2
∑
i,z

v i,z
νδv

i,z
δν

[
(1 + N(εδ − εν))Vi,z(εδ − εν)

+ N(εν − εδ)Vi,z(εν − εδ)
]

− 2
∑
i,z

w i,z
νδw

i,z
δν

[
(1 + N(εδ − εν))Wi,z(εδ − εν)

+ N(εν − εδ)Wi,z(εν − εδ)
]

, (19)

whereN(x) = 1/(e~x/(kBT )−1) is the Bose-Einstein distribution
and where we defined

Ai(x) ≡
∑

k Ω
2
k ιk,i ιk,iδ(x −Ωk),

Vi,z(x) ≡
∑

k Ω
2
k κk,i,zκk,i,zδ(x −Ωk),

Wi,z(x) ≡
∑

k Ω
2
kζk,i,zζk,i,zδ(x −Ωk)

(20)

as spectral densities relevant for exciton, linear vibration, and
quadratic vibration to bath couplings, respectively. In Eq. (19)
we have assumed that the three couplings are statistically inde-
pendent and thus neglected cross terms ∝ κι, ιζ , κζ . Similarly
we assumed that the various vibrations and chromophores
are modulated independently. The generalization to arbitrary
correlations is summarized in Appendix A.

The total rate for transport from state ν,

Rνν,νν = −
∑
δ
δ,ν

Rδδ,νν , (21)

and the decoherence rates µ , ν,

Rνµ,νµ =
[
Rνν,νν + Rµµ,µµ

]
/2, (22)

are derived from rates of Eq. (19). Spectral densities Eq. (20)
are positive functions, e.g., A(x) ≥ 0, defined for positive
frequencies x > 0. The successful estimation of spectral densi-
ties from microscopic foundations, e.g., molecular dynamical
simulations, is rare.59 In practice there are a handful of popu-
lar forms for spectral densities which are parameterized from
experiments. In the simulation below, we use spectral densities
of overdamped Brownian oscillator,60

Ai(x) =
2λi

AΛ
i
Ax

x2 + (Λi
A)2
Θ(x), (23)

and the same forms for Vi,z and Wi,z, where Λi,z
A is a bath

relaxation rate, λi,z
A is a reorganization energy, andΘ(x) denotes

the Heaviside step function.
We next examine the effects of the quadratic coupling

Eq. (12) on master equation (15). To that end, we look into
the purely vibrational relaxation (no electronic dynamics) of a
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FIG. 1. Vibrational relaxation [Eq. (24)] in the log-linear plot. Comparison
of exponential energy decay of linear damping [Eq. (11)] case (blue solid
line) with power law energy relaxation of quadratic damping Eq. (12) (red
dashed line). Their combination interpolate between short time power law
and asymptotic exponential relaxation (black dotted-dashed line). Parameters
inset, initial vibrational state n = 30.

single mode at low temperatures N(ω)→ 0. In the eigenbasis
[Eq. (4)], the master equation (15) for populations

dρnn

dt
= 2W(2ω){(n + 1)(n + 2)ρn+2 n+2 − n(n − 1)ρnn}

+ 2V(ω){(n + 1)ρn+1 n+1 − nρnn} (24)

shows the rates representing the linear ∝ V(ω) and quadratic
damping ∝ W(2ω). The system of equations (24) was
solved numerically, starting at t = 0 from the highly excited
(n = 30) vibrational level. The decay of vibrational energy
〈E 〉 ≡ Tr (Ĥv −

~ω
2 ) ρ̂ = ~ω

∑
n ρnn plotted by the dashed line

in Fig. 1 manifests two regimes: Subexponential decay in the
early times (higher excited levels) is controlled by quadratic
terms ∝W(2ω) in Eq. (24), as evident from comparison with
the dashed line of limiting V(ω) = 0 solution. And exponen-
tial decay in the late times (low levels) is driven by the linear
terms∝ V(ω), sharing asymptotics with the dotted-dashed line
of V(2ω) = 0 solution.

This behavior can be clarified from analytic consider-
ations. Master equation (24) can be transformed into the
evolution equation for the energy,

d〈E〉
dt
= −2V(ω)〈E 〉 −

4W(2ω)
~ω

〈E2 〉, (25)

where we defined 〈E2 〉 ≡
∑

n n(n − 1)(~ω)2ρnn. The linear
damping represented by the first term on the rhs of Eq. (25)
thus yields exactly exponential Landau-Teller decay [when
the quadratic term is neglected W(2ω) = 0] as represented
by the straight solid line in Fig. 1. With the second, quadratic
term, Eq. (25) is not closed and cannot be solved simultane-
ously exactly and analytically. However, when closing it by
approximating 〈E2 〉 ≈ 〈E 〉2, we obtain the solution

〈E〉(t) =
~ωV(ω)
2W(2ω)

1[
1 + ~ωV(ω)

2W(2ω)〈E 〉(0)

]
e2V(ω)t − 1

,

which interpolates between power law decay at early times
t < 1/V(ω),

〈E〉(t) =
〈E 〉(0)

1 + t
[

4〈E 〉(0)W(2ω)
~ω + 2V(ω)

] , (26)

and switches to asymptotic exponential decay 〈E 〉(t)
= e−2V(ω)t〈E 〉(0) in an excellent agreement with numerics of
Fig. 1. Note that power law in Eq. (26) is also an analytical
solution for the V(ω) = 0 limiting case.

V. VIBRONIC LINESHAPES

We next describe the eigenfrequency εα fluctuations
represented by the bath-space operator

∆̂α ≡
1
~
〈α |ĤSB |α〉

=
∑
k,i

ΩkB̂k
*
,
ai
αα ιk,i +

∑
z

v i,z
αακk,i,z +

∑
z

w i,z
ααζk,i,z

+
-

+ h.c.

(27)

Fluctuations given by Eq. (27) are linear in the bath coordinate
B̂ and thus represents Gaussian fluctuations, the treatment of
which is standard and summarized below.

Gaussian fluctuations are fully characterized in terms of
the matrix of correlation functions

Cβα(t) ≡
〈
e iĤBt/~

∆̂βe− iĤBt/~
∆̂α

〉
B

, (28)

where 〈 X̂ 〉B ≡ TrB{X̂ ρ̂B} with equilibrium bath density ρ̂B

defined in Eq. (18). Inserting Eq. (27) into Eq. (28) and
expressing in terms of spectral densities Eq. (20) yield

Cβα(t) =
1

2π

∫ ∞
−∞

dω cos(ωt) coth

(
~ω

2kBT

)
C ′′βα(ω)

−
i

2π

∫ ∞
−∞

sin(ωt)C ′′βα(ω), (29)

where

C ′′βα(ω) =
∑

i

ai
ααai

ββ

[
Ai,z(ω) −Ai,z(−ω)

]
+

∑
z,i

v i,z
ααv

i,z
ββ

[
Vi,z(ω) − Vi,z(−ω)

]
+

∑
z,i

w i,z
ααw

i,z
ββ

[
Wi,z(ω) −Wi,z(−ω)

]
. (30)

The effect of Gaussian noise on lineshapes is given by the
line-shape function gβα(t) obtained by the double integration
of Cβα(t),

gβα(t) =
∫ t

0
dτ

∫ τ

0
dτ′Cβα(τ′). (31)

Equation (31) can be used for arbitrary spectral densities,
including the correlated ones, following the prescription in
Appendix A. For the overdamped spectral densities in Eq.
(23), these integrations can be carried over into the closed
expressions summarized in Appendix B.

These functions are pivotal for determining lineshapes of
the optical spectrum. The general algorithm for calculating
the absorption of molecular aggregates will be presented in
Sec. VI [see Eqs. (38) and (43)]. Here we clarify the effect of
the three couplings of Eq. (13). We thus analyze absorption
spectra for the two-level electronic chromophore with a single
vibrational mode at low temperatures where Eq. (38) simplifies
to

I(Ω) =
∑

ñ

|µ0ñ |
2
∫ ∞

0
dte iΩte− i(ε+ñω)t−Rñ0,ñ0te−gññ(t). (32)

Here the summation runs over vibrational states of the excited
electronic manifold [Eq. (5)], and the dephasing rates Rñ0,ñ0

= ñV(ω) + ñ(ñ − 1)W(2ω) are half of transport rates of
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FIG. 2. Top panel: Effect of couplings (10)–(12) on the absorption lineshape
of a single exciton with vibronic progression and pure excitonic dephasing
(ĤSB,E ) (blue line), linear coupling ĤSB,E + ĤSB,L (black line), and quadratic
coupling ĤSB,E +ĤSB,L+ĤSB,N (red line). Bottom panel: FWHM of the peaks of

vibronic progression. Parameters: mω2d2

4~ω = 1.25, ~ωkBT = 5, ΛA = ΛV = ΛW,
ω/ΛA = 15, λA/ΛA = 1.

Eq. (24). Normally, the broadening induced by the R rates
is minor and the line-shaping is mostly determined by the gññ

functions.
Figure 2 shows the example spectra of the two-level chro-

mophore with vibrational progression (top panel) and full
width at half maximum (FWHM) for each peak (bottom panel).
Pure electronic dephasing [Eq. (10)] shows a constant FWHM
for all peaks of vibronic progression (blue line). The linear
coupling [Eq. (11)] does not contribute to the line-shape func-
tion g as vññ = 0 and the FWHM is only weakly growing with ñ
through the R rates (black line). In contrast, the quadratic cou-
pling [Eq. (12)] with gññ ∝ w

2
ññ ∝ ñ2 results in progressively

broadened peaks (red line) interpolating between linear ∝ ñ
scaling of the FWHM for Gaussian lineshapes of slow limit
λW/ΛW → ∞ and quadratic ∝ ñ2 scaling for Lorentzian line-
shapes of fast limit λW/ΛW → 0 [see Eqs. (8.60b) and (8.60c)
in Ref. 54]. Note that the transport and line-shape effects are
carried by various parts of expansion (V†+V )2 = V†V†+V†V
+ h.c. The∝ V†V† part is solely responsible for the vibrational
decay shown in Fig. 1 and makes a very little contribution
to lineshapes (through R), which is instead dominated by the
∝ V†V part. In conclusion, the quadratic coupling is capable of
describing the increasing linewidth of peaks along the vibronic
progression.

VI. PATHWAYS OF LINEAR AND NONLINEAR
RESPONSE

In the present section, we shall combine results of Secs.
IV and V into a general algorithm for the calculation of optical
response. We switch formally into the Liouville space54 and
denote superoperators operating on ket (e.g., µ̆(L)X̂ = µ̂X̂) and
operating on bra (µ̆(R)X̂ = X̂ µ̂) indices of the density matrix
by superscripts (L) and (R), respectively.

Optical response is usually expanded in powers of elec-
tric fields. Most experiments are related to the linear or
the third-order response. Weak-field absorption is a Fourier
transformation

S(Ω) = Re
∫ ∞

0
e iΩtSL(t)dt (33)

of the linear response function

SL(t) = Tr{ µ̂Ğ(t)µ̆†(L) ρ̂eq}, (34)

where Ğ(t) ≡ e− iH̆(L)t/~e iH̆(R)t/~ is the evolution superoperator
generated by the full Hamiltonian Ĥ = ĤS + ĤB + ĤSB and ρ̂ eq

is the equilibrium density matrix.
A handful of experimental methods belonging to third-

order spectroscopies such as time-resolved fluorescence, pump
probe, transient grating, and 2D spectroscopy are represented
by combinations of the following eight third-order response
functions:

S1(t1, t2, t3) = Tr{ µ̂Ğ(t3)µ̆†(R)Ğ(t2)µ̆(R)Ğ(t1)µ̆†(L) ρ̂ eq},

S2(t1, t2, t3) = Tr{ µ̂Ğ(t3)µ̆†(R)Ğ(t2)µ̆†(L)Ğ(t1)µ̆(R) ρ̂ eq},

S3(t1, t2, t3) = Tr{ µ̂Ğ(t3)µ̆†(L)Ğ(t2)µ̆(L)Ğ(t1)µ̆†(L) ρ̂ eq},

S4(t1, t2, t3) = Tr{ µ̂Ğ(t3)µ̆†(L)Ğ(t2)µ̆†(R)Ğ(t1)µ̆(R) ρ̂ eq},

S5(t1, t2, t3) = − Tr{ µ̂Ğ(t3)µ̆†(L)Ğ(t2)µ̆(R)Ğ(t1)µ̆†(L) ρ̂ eq},

S6(t1, t2, t3) = − Tr{ µ̂Ğ(t3)µ̆†(L)Ğ(t2)µ̆†(L)Ğ(t1)µ̆(R) ρ̂ eq},

S7(t1, t2, t3) = − Tr{ µ̂Ğ(t3)µ̆(L)Ğ(t2)µ̆†(L)Ğ(t1)µ̆†(L) ρ̂ eq},

S8(t1, t2, t3) = Tr{ µ̂Ğ(t3)µ̆(R)Ğ(t2)µ̆†(L)Ğ(t1)µ̆†(L) ρ̂ eq}.
(35)

Their usual frequency domains are defined for nonrephasing
diagrams n = 1, 3, 5 as

Sn(Ω1, t2,Ω3) =
∫ ∞

0

∫ ∞
0

dt1dt3e iΩ3t3+ iΩ1t1 Sn(t1, t2, t3),

for rephasing diagrams n = 2, 4, 6 as

Sn(Ω1, t2,Ω3) =
∫ ∞

0

∫ ∞
0

dt1dt3e iΩ3t3− iΩ1t1 Sn(t1, t2, t3),

and for n = 7, 8 as

Sn(t1,Ω2,Ω3) =
∫ ∞

0

∫ ∞
0

dt2dt3e iΩ3t3+ iΩ2t2 Sn(t1, t2, t3).

The usual representation of Eqs. (35) by double sided Feynman
diagrams is shown in Fig. 3. Diagrams 1 and 2 represent pho-
ton emission, diagrams 3 and 4 represent ground state bleach,
diagrams 5 and 6 represent excited state absorption (ESA),
and diagrams 7 and 8 represent double quantum coherence
signals.

Expressions (34) and (35) are still rather formal since
the evolution superoperator Ğ must include both the mas-
ter equation and the dynamics of diagonal fluctuations and
their combination is a complex task, which always requires
approximations. To that end, we shall introduce G, Green’s
function of master equation (15), and the operator Uα(t)
≡ 〈α | e−

i
~ (ĤD

SB+ĤB)t |α 〉 for bath evolution when the system is
in the α eigenstate. In the secular approximation, a coher-
ence element of the density matrix is not mixed with other
coherences or populations. Bath evolution is thus associ-
ated with fixed eigenstates and estimated without controversy
as

Gαβ,αβ(t) = Gαβ,αβ(t)UL
α(t)U†Rβ (t). (36)

Population elements of the density matrix are subject to
transfers, and bath evolution is associated with various system
eigenstates during time. Its accounting is thus complex, and
applicable strategies range from (standard) complete neglect
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FIG. 3. Feynman diagrams (Liouville space pathways)
for the third-order response functions, Eqs. (48) and (C1).

of the bath evolution Gαα,γγ = Gαα,γγ, and thus neglect of the
associated Stokes shift and lineshapes dynamics, over assump-
tions of bath evolution in some fixed system state and time
scale separation arguments61 to attempts to follow the jumps
to some extent. Here, we followed the latter approaches and
supplemented the system Green’s function element Gαα,γγ,
describing transfer from the initial state γ to the final state
α, with bath evolution associated with the first part of time
interval t ′ with γ and with final state α for the remaining
time,

Gαα,γγ(t) = Gαα,γγ(t)UL
α(t − t ′)U†Rα (t − t ′)UL

γ (t ′)U†Rγ (t ′). (37)

We thus allow for Stokes shift and 2D line-shape dynamics, and
keeping 0 � t ′ � t, Eq. (37) correctly reproduces both their
static and fast fluctuation limits, surpassing approximations
fixing the bath evolution in a certain state. For very simple sys-
tems, the interval t ′ can be even sampled from 0 to t in the spirit
of Refs. 11 and 62 and such calculation could even be exact
for unidirectional transports;63,64 however, the numerical costs
grow substantially then, beyond the applicability to vibronic
aggregates. In the simulations shown in Figs. 4–6, we pick a
simple choice t ′ = t/2. Sophistication of the best choice for
t ′ is left for future research; the present approach is neverthe-
less computationally feasible and reproduces important limits.
Note that the element Gαα,αα(t) = Gαα,αα(t)UL

α(t)U†Rα (t) can
be correctly subsumed to either Eq. (36) or Eq. (37). Elements
of G not listed in Eqs. (36) and (37) vanish in the secular
approximation, so we set Gαβ,γδ(t) = 0 for them.

Combining Eq. (34) with Eq. (36), we get for the linear
response function

SL(t) =
∑
α∈G

∑
β∈E

µαβGβα,βα(t)µ†βα ρ eq,αF(2)
αβ(t, 0), (38)

where ρ eq,α ≡ TrB{〈α | ρ̂ eq |α 〉}, and we merged the bath
phase factor into

F(2)
βα(τ2, τ1) ≡ Tr B { Uα(0 − τ2)Uβ(τ2 − τ1)

×Uα(τ1 − 0)〈α | ρ̂ eq |α 〉 } /ρ eq,α. (39)

Here, it is assumed that the process starts at chromophore’s
electronic ground state with vibrations and bath popu-
lated according to the Boltzmann distribution of Ĥv + ĤSB

+ ĤB. The equilibrium density matrix ρ̂ eq can be obtained
by switching on the interaction ĤSB at time τ = −∞

where we start from the uncorrelated density matrix ρ̂(−∞)
≡ e−Ĥv /(kBT )

Trv
{
e−Ĥv /(kBT )

} |Πigi〉 〈Πigi | ⊗ ρ̂B.65 Approximating −∞

< τ < 0 evolution U(t) ≡ e−
i
~ (ĤSB+ĤB)t by neglecting transport

〈α |U(t)|α〉 ≈ Uα(t), we get

ρ̂ eq ≈
∑
α∈G

ρ eq,αUα(0 +∞)|α 〉〈α | ⊗ ρ̂BU†α(0 +∞), (40)

where the equilibrium for vibrational ground states reads as

FIG. 4. Top: 2D peak shapes of transport emission path-
ways Re(SO

1 + SO
2 ) at delays ΛAt2 = 0 (a), ΛAt2 = 0.5

(b), ΛAt2 = 2.0 (c). Parameters εγ − εβ =λA = 200ΛA
= 10

3 kBT/~. Bottom: Stokes shift (d) and ellipticity (e)
defined as the ratio of diagonal and anti-diagonal FWHM
of the peak as a function of delay time.
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FIG. 5. Spectra of vibronic dimer, with parameters ε1 =

ε2, µ1/µ2 = 10, J12/ω = 1/8, λA = 2J12, λA/λV = 2,
λV/ΛV = 10, ΛV/ΛA = 10, ~ωkBT = 26.7, ΛAt2 = 0.65,

mω2d2

4~ω = 0.15. (a) Level scheme of theEmanifold. States
|+〉 and |−〉 are symmetric and anti-symmetric combina-
tions of the local states, respectively. (b) Absorption spec-
trum. (c) 2D spectrum with Ξ12 → ∞ (i.e., Re

∑4
n=1 Sn)

calculated using Eqs. (48) and (C1) at t′ = t2/2. (d)
2D spectrum Re

∑6
n=1 Sn with Ξ12 = 0. (e) The same

2D spectrum as in (c), but with transport contributions
approximated using Eq. (51).

ρ eq,α =
e−~εα/(kBT )∑

α∈G e−~εα/(kBT )
. (41)

Inserting Eq. (40) into Eq. (39), we obtain a practical form of
definition for phase factors

F(2)
βα(τ2, τ1) =

〈
Uα(−∞ − τ2)Uβ(τ2 − τ1)Uα(τ1 +∞)

〉
B

. (42)

Equation (42) can be often simplified because the bath
evolution in the initial state α is trivial in many realistic cases.
For instance, ∆̂α = 0 holds for all α ∈ G eigenstates for
the standard excitonic ĤSB,E and linear vibrational ĤSB,L cou-
plings. Then, by dropping trivial evolution in the α state, Eq.
(42) can be evaluated exactly by using the second cumulant22

F(2)
βα(τ2, τ1)��∆̂α=0 = exp(−gββ(τ21)), (43)

where τij ≡ τi − τj. Equation (43) shall be inserted into the
linear response function [Eq. (38)] to complete the algorithm
for calculating absorption lineshapes. Here we pay the debt
of Sec. V: For a single chromophore with a single vibration,
the eigenstates of E are the shifted vibrational states of Eq.
(5), and at low temperatures (ρ eq,0 = 1, ∆̂0 = 0), Eqs. (38)
and (43) simplify into Eq. (32) used to calculate lineshapes of
Fig. 2.

The general estimate of Eq. (42) including account of the
ground state to bath correlations (see Ref. 16 for an alter-
native notation) is relevant for many extensions of the stan-
dard vibronic model when ∆̂α , 0, e.g., for the quadratic
system-bath coupling Eq. (12) at finite temperatures ρ eq,1 , 0,

when the vibrations are anharmonic,66 or when G and F man-
ifolds are coupled.67 Evaluated using the second cumulant, it
reads as

F(2)
βα(τ2, τ1) = F(2)

βα(τ2, τ1)��∆̂α=0 exp (−gαα(τ21)

+ gαβ(τ21) + gβα(τ21) + irαατ21 + irαβτ12

)
,

(44)

where we employed the asymptotic form 2 Im
[
gαβ(t)

]

≈ rαβt, where

rαβ ≡ lim
t→∞

2 Im
[
gαβ(t)

]

t

= 2 *.
,

∑
i

λi
Aai

ααai
ββ +

∑
i,z

λi,z
V v

i,z
ααv

i,z
ββ +

∑
i,z

λi,z
Ww

i,z
ααw

i,z
ββ

+/
-

.

(45)

We next turn to the third-order response and evaluate Eq.
(35). The evolution superoperator G(t) brings different bath
factors U for transport [Eq. (37)] and dephasing [Eq. (36)]
matrix elements and, consequently, the structure of bath factors
different for pathways with and without transport during the
t2 interval. We thus partition the response function S1, . . . , S6

to transfer SO and non-transfer SD pathways visualized in
Fig. 3,

Sj(t1, t2, t3) = SD
j (t1, t2, t3) + SO

j (t1, t2, t3). (46)

Expanding Eq. (35) in the vibronic index and merging phase
factors, we get for the emission pathways

SD
1 (t1, t2, t3) =

∑
α,γ∈G

∑
β,δ∈E

µγβGβγ,βγ(t3)µ†δγGβδ,βδ(t2)µαδGβα,βα(t1)µ†βα ρeq,αF(4)
δ,γ,β,α(t1, t1 + t2, t1 + t2 + t3, 0),
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SD
2 (t1, t2, t3) =

∑
α,γ∈G

∑
β,δ∈E

µγβGβγ,βγ(t3)µ†δγGβδ,βδ(t2)µ†βαGαδ,αδ(t1)µαδ ρeq,αF(4)
δ,γ,β,α(0, t1 + t2, t1 + t2 + t3, t1), (47)

and

SO
1 (t1, t2, t3) =

∑
α,δ∈G

∑
β,γ∈E
γ,β

µδγGγδ,γδ(t3)µ†γδGγγ,ββ(t2)µαβGβα,βα(t1)µ†βα ρeq,αF(6)
β,γ,δ,γ,β,α(t1, t1 + t ′, t1 + t2, t1 + t2 + t3, t1 + t ′, 0),

SO
2 (t1, t2, t3) =

∑
α,δ∈G

∑
β,γ∈E
β,γ

µδγGγδ,γδ(t3)µ†γδGγγ,ββ(t2)µ†βαGαβ,αβ(t1)µαβ ρeq,αF(6)
β,γ,δ,γ,β,α(0, t1 + t ′, t1 + t2, t1 + t2 + t3, t1 + t ′, t1).

(48)

Similar expansions of the ground state bleach, excited state absorption, and double quantum coherence pathways are summarized
in Appendix C. The bath phase factors for non-transfer

F(4)
δ,γ,β,α(τ4, τ3, τ2, τ1) =

〈
Uα(−∞ − τ4)Uδ(τ43)Uγ(τ32)Uβ(τ21)Uα(τ1 +∞)

〉
B

, (49)

and transfer types of pathways

F(6)
κ,η,δ,γ,β,α(τ6, τ5, τ4, τ3, τ2, τ1) =

〈
Uα(−∞ − τ6)Uκ(τ65)Uη(τ54)Uδ(τ43)Uγ(τ32)Uβ(τ21)Uα(τ1 +∞)

〉
B

(50)

are evaluated exactly using the second cumulant in
Appendix D.

We next discuss the characteristic features of lineshapes
prescribed by Eq. (50). First we plot lineshapes of a single
emission pathway not complicated by complex interferences
with bleach and ESA contributions. We consider transfer dia-
grams SO

1 and SO
2 of Fig. 3, starting and ending in the same

ground state δ = α and transferring the excitation between
two vibronic eigenstates β to γ in the E manifold. For sim-
plicity, we consider that the bath acts similarly on both states
ai
γγ = ai

ββ . A combination of the rephasing and nonrephas-

ing signals SO
1 (Ω1, t2,Ω3) + SO

2 (Ω1, t2,Ω3) is shown in the
top panels of Fig. 4 for three delay times t2. At short delay
times of the left panel, the peak is elongated but assumes to
be more symmetric with increasing t2, being simultaneously
shifted down in frequenciesΩ3. A qualitatively similar behav-
ior was reported for the principal peak,68 and in full analogy,
we can ascribe the elongation to the bath-induced correlations
of transition frequency in periods t1 and t3 and the shift to
bath reorganization. In Fig. 4(c), the peak-shape evolution is
almost finished. In the bottom panels of Fig. 4, these changes
were quantified and displayed as the functions of delay time.
The shift is measured as the position of the peak maximum and
plotted in Fig. 4(d) and the shape is characterized by the ratio of
diagonal and anti-diagonal FWHM69 in Fig. 4(e). Both panels
show the transition from a static case of diagonal peaks with
no shift into the symmetric, shifted lineshape. In contrast, both
values would be constant in t2 when phase acquisition during
transport is ignored. In our simple example, transition has a
character of exponential decay at the 1/ΛA time scale. In a
more sophisticated case, the bath would act differently at the
vibronic states ai

γγ , ai
ββ resulting in a complex multiexpo-

nential t2 dynamics of shift and ellipticity, which would be
also beyond the reach of approximations allowing the phase
to follow t2 evolution in a fixed vibronic state.

Lineshapes of emission diagrams shown in Fig. 4,
disregarding bleach and ESA, are naturally related to
the fluorescence excitation measurement.70,71 Prospective

accomplishment of its time-resolved variant at ultrafast time
scales will provide a perfect case for our simulations. At the
present state of experimental art, however, we have to rather
address the standard 2D spectra related to differential absorp-
tion, where the emission is stimulated and its lineshapes always
interfere with ground state bleach pathways S3, S4 and at times
even with ESA S5, S6. To asses the effect of Eq. (48) on full
2D, we have calculated example 2D spectra of an excitonic
dimer symmetric in energies ε1 = ε2 but with different dipoles
µ1/µ2 = 10, allowing for spectroscopy of both symmetric and
anti-symmetric excitons, and modulated by a single vibration
residing at the first molecule, in the J12 < ω parametric regime.

The level structure is as follows: the ground state mani-
fold G consists of vibrational states g, g′ ≡ | g 〉| 11 〉, . . . . The
scheme [Fig. 5(a)] of the first excitonic manifold E suggests
two levels around ε , + and � separated by effective resonant
coupling J̃ ≡ J12〈0| 0̃ 〉, and two levels, +′ and−′, around ε+ω,
etc. The absorption line-shape [Fig. 5(b)] indeed shows two
resolved peaks around ε ; the doublet in vibronic progression
is not resolved because the vibronic modulation reduces the
effect of coupling. The existence of a doublet around ε +ω is
only apparent in the peak asymmetry. Finally,F has vibrational
states f, f ′ ≡ | f 〉| 1̃1 〉, . . . .

The 2D spectrum shows a rich structure of peaks, posi-
tions and magnitudes of which can be explained by combining
the level structure, diagrams of Fig. 3, and transport dynamics
of Eq. (15). Peak interferences are complex and very diverse
in nature, e.g., the overlaps with ESA peaks strongly depend
on the system specific double exciton shift Ξ12. We show the
overlap of emission and bleach [formally setting Ξ12 → ∞,
panel (c)] and further interference with ESA for Ξ12 = 0 in
panel (d). Here, the peak structure of the (d) and (e) panels is
the same, as for the Ξ12 = 0 case, the frequencies of E → F
transitions correspond to frequencies of G → E transitions,
e.g., εf − ε+ = ε− − εg, εf − ε− = ε+ − εg. However, when
studied in detail, negative-going contributions of ESA affect
the magnitude and shapes of peaks as will be discussed below.
Magnitudes of emission, bleach, and ESA contributions to the
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FIG. 6. (a) Feynman diagrams for the cross peaks ECP as marked in Figs. 5(c)
and 5(d). Levels denoted according to Fig. 5(a). (b) Waiting time evolution of
central detection frequency Ω3 of ECP peaks for the calculation of Figs. 5(c)
(blue) and 5(d) (red). Dotted lines average over a period of electronic beatings.
Model and parameters as in Fig. 5(c). (c) Feynman diagrams for the cross peaks
VCP as marked in Fig. 5(c). Levels denoted according to Fig. 5(a), g′ is the first
vibrational excitation |g′〉 ≡ |g〉 |11〉. (d) Modulation of the VCP [marked in
Fig. 5(c)] peak. The blue line represents simulation with linear vibration-
bath coupling parametrized as in Fig. 5(c). For the black line, quadratic
vibration-bath coupling ĤSB,N is added with parameters λW = 0.1λV,
ΛW = ΛV.

four peaks of vibronic splitting around (ε ± J̃ , ε ± J̃) are sum-
marized in Table I, as obtained by evaluating relevant response
functions for t1 = t3 = 0. Obviously the effect of ESA in Fig.
5(d) is disproportional: at low temperatures J̃ > kT (valid for
parameters of Fig. 5), the peaks Ω3 = ε + J̃ are significantly

reduced by ESA as G−−,−−(t2) ≈ 1 and G−−,++
t2→∞
−−−−→ 1. On the

contrary, G++,++
t2→∞
−−−−→ 0 vanishes quickly and the lower peaks

Ω3 = ε − J̃ are thus less affected by ESA.
Such considerations are standard;72 however, our algo-

rithm aims at describing details of peak-shape evolution. We
demonstrate it on a specific electronic cross peak ECP around
(Ω1,Ω3) ∼ (ε+J̃ , ε−J̃) marked in Fig. 5(c). It is contributed by
bleach pathway ∝ Ggg,gg, interfering with the emission path-
ways representing transport |+〉 → |−〉, ∝ G−−,++, along with
some beating diagrams, all shown in Fig. 6(a) and eventually
negative ESA contribution ∝ −G++,++ for Ξ12 = 0 in Fig. 5(d).
The bleach contribution is centered at stable (absorption) fre-
quency Ω3 = ε − J̃ and is constant in time Ggg,gg(t2) = 1. The
emission (and eventually ESA) peak is progressively shifted
down toward emission frequency δΩ3 ∝ −Im ġ(t2). Its mag-
nitude grows up as G−−,++(t2) ≈ 1− e−R++,++t2 (for T → 0), and
eventually added ESA interpolates from a negative to positive
peak G−−,++(t2) − G++,++(t2) ≈ 1 − 2e−R++,++t2 . Their overlap
explains differences between ECP structures of Figs. 5(c) and
5(d). Shifted contribution is positive and larger in Fig. 5(c) and
emphasizes lower Ω3 frequencies of ECP compared to that of
Fig. 5(d) reduced by ESA.

We next demonstrate the role of the phase factor F(6)

and compare the lineshapes calculated by employing the full
prescription of Eq. (48) in Fig. 5(c) (Ξ12 = ∞ case) with
calculations implementing a much simpler t2 → ∞ limit of
F(6) [Fig. 5(e)], which combines the factor F(2) for absorp-
tion in the t1 interval with the factor F(2)∗e irt3 for emission in
t3,

SO
1 (t1, t2, t3) =

∑
α,δ∈G

∑
β,γ∈E
γ,β

µδγGγδ,γδ(t3)µ†γδGγγ,ββ(t2)

× µαβGβα,βα(t1)µ†βα ρeq,αF(2)
βα(t1, 0)

×F(2)∗
γδ (t3, 0)e irγγ t3 ,

SO
2 (t1, t2, t3) =

∑
α,δ∈G

∑
β,γ∈E
β,γ

µδγGγδ,γδ(t3)µ†γδGγγ,ββ(t2)

× µ†βαGαβ,αβ(t1)µαβ ρeq,αF(2)
βα(0, t1)

×F(2)∗
γδ (t3, 0)e irγγ t3 . (51)

TABLE I. Magnitudes of four peaks around (ε ± J̃ , ε ± J̃) as obtained by the analysis of Feynman diagrams. For
simplicity, we assumed low temperatures so thatG−−,++ = 0 and omitted rapidly oscillating terms∝ G−+,−+,G+−,+−

in the analysis.

Pathway \ peak (ε − J̃ , ε + J̃) (ε + J̃ , ε + J̃) (ε − J̃ , ε − J̃) (ε + J̃ , ε − J̃)

Emission 0 µ4
g+G++,++(t2) µ4

g−G−−,−−(t2) µ2
g+µ

2
g−G−−,++(t2)

Bleach µ2
g+µ

2
g−Ggg,gg(t2) µ4

g+Ggg,gg(t2) µ4
g−Ggg,gg(t2) µ2

g+µ
2
g−G++,++(t2)

ESA −µ2
−f µ

2
g−G−−,−−(t2) −µ2

g+µ
2
−fG−−,++(t2) 0 −µ2

+f µ
2
g+G++,++(t2)



084104-11 V. Perĺık and F. Šanda J. Chem. Phys. 147, 084104 (2017)

The two algorithms predict the same 2D lineshapes for short
delays t2 = 0 (not shown) before any transport can take place
and SD pathways dominate and also in the asymptotic region
t2 → ∞ where the two prescriptions Eqs. (48) and (51) for SO

lineshapes agree. The differences appear at intermediate delay
times shown in Figs. 5(c) and 5(e). The detection frequencyΩ3

of the emission pathway is lower (representing t2 → ∞ limit)
for the approximation of Fig. 5(e); the parametrization of our
example spectra shows up as an almost separated peak at the
bottom of the ECP structure, while the overlap is smooth for
the full calculation of Fig. 5(c). The difference in the waiting
time evolution of ECP can be easily quantified for the detec-
tion frequencyΩ3 defined as the center of the mass of the ECP
peak. It is shown in Fig. 6(b) as a function of delay time. Here,
the periodic modulation represents electronic beatings [see the
SD

2 diagram in Fig. 6(a)]. Averaging over the period (dashed
lines) provides a smooth function accessible for explanation.
Dynamics of the approximation is entirely induced by chang-
ing proportions of emission and bleaching contributions. In
contrast, the shift of the “exact” result appears more slowly as
the Stokes shift of the emission pathway is gradually devel-
oped during the t2 period. The differences in peak-shape are
rather complex, escaping some simple one-dimensional char-
acterization. The ECP peak in 5(c) is less elongated along Ω3

still as a result of developing Stokes shift of emission contri-
bution. In addition, in the low frequency region, the emission
pathways dominate and peak shapes are accordingly different
here.

We next demonstrate the effects of the quadratic
vibrational-bath coupling on the 2D spectrum. Both the effects
of faster vibrational relaxation (Fig. 1) and widened peaks of
progression (Fig. 2) are naturally present in the 2D spectrum
as the width of 2D peaks and rate of vibrational relaxation.
Beyond these effects, we have looked whether the vibrational
dephasing introduced by quadratic coupling can be identified.
We focused on the VCP vibronic cross peak, where the diagra-
matic analysis of Fig. 6(c) suggests the presence of vibronic
beatings. In Fig. 6(d) we plotted the amplitude of the VCP peak
as a function of delay. Interestingly we see two periodic mod-
ulations: a modulation with a shorter period 1/ω represents
vibrational coherence, while the slower period is of |+〉 〈−|
electronic origin. The two interfere to provide a complex beat-
ing pattern. The blue line represents the case of zero quadratic
coupling, when both these oscillations survive for many peri-
ods. Increased quadratic coupling results in a selective decay
of the vibrational coherence, as demonstrated by the black line
that interpolates from complex, mixed coherence at short times
to slower modulation of purely electronic coherence in the end
of the time-window in Fig. 6(d). This is another demonstra-
tion of the decoherence effects of quadratic vibration to bath
coupling, added to that in Sec. V. We note that the VCP peak
is not significantly affected by ESA, and Fig. 6(c) represents
the analysis of both Ξ12 = 0 and Ξ12 → ∞ cases.

VII. CONCLUSIONS

The present vibronic model was primarily designed to
simulate the 2D-vis spectra for molecular dimers and for
dyadic carotenoid-chlorophyll structures, where transport can

be reduced to formally similar computations. We have already
reported vibronic calculations of transport times as deduced
from transient grating measurements of kinetics of the artificial
carotenoid-purpurin dyad11 and natural lycopene-chlorophyll
complex of Rs. molischianum.10

The present communication provides a detailed explana-
tion on how we combine transport and dephasing dynamics
into 2D lineshapes. We adopted an algorithm which, as com-
pared to standard simulations, accounts for the phase-aquiring
process along transport pathways and thus allows for accu-
rate simulations of cross peak lineshapes, while not exceeding
them in computational costs. Note that the 2D line-shape of the
principal peak is widely used to study the spectral diffusion
process.68,69,73–77 With the present simulations, we are pre-
pared to look at cross-peak-shapes with similar interest. The
phase evolution during transport is most easily accessed when
peaks of the transport pathways do not interfere with bleach
and ESA peaks, as would be in the proposed measurements of
time-resolved fluorescence excitation.71

The explicit representation of underdamped vibrations
intrinsic to vibronic calculations opens the doors to relax
standard assumptions of the spin-boson model for lineshapes
at little additional computational cost. Here we made a step
beyond the exponential decay of the Landau-Teller relaxation
dynamics and employed quadratic damping to obtain subex-
ponential vibrational relaxation. We analyzed all through the
effects of such an extension for lineshapes of both absorp-
tion and 2D spectra. Note however that other extensions of
the spin-boson dynamics model can be considered in the sys-
tem part of the Hamiltonian. For example, we are not limited
to harmonic profiles of vibrations linearly coupled to a chro-
mophore. Realistic potential surfaces and nonlinear exciton to
vibration coupling can be implemented. The study of anhar-
monic effects in 2D is in preparation66 and shows certain
similarities with the present calculations. Indeed, nonlinear
transformations of coordinate or coupling are complementary
strategies to generalize dynamics beyond the spin-boson case.
The present model can thus also be used to account for cer-
tain dynamical aspects of anharmonic vibrations while avoid-
ing notorious mathematical obstacles of higher polynomial
potentials.

Another prospective generalization of the present simu-
lations addresses the constant rates in time-local master equa-
tions [Eq. (15)]. Allowing time-dependent rates to account for
transients of vibronic transport within the formalism of time-
convolution-less master equations is an obvious idea, which
fails, however, to resolve the true challenge connected with
these transients: to account bath correlations between differ-
ent periods of nonlinear response on transport.78 Recently, a
new type of projection formalism has been proposed that aims
in this direction.79 The perspective combination of this concept
with the present algorithm for 2D lineshapes present seems to
be a promising one.

ACKNOWLEDGMENTS

We acknowledge the support of the Czech Science Foun-
dation (Grant No. GA14-25752S). Authors are indebted to
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APPENDIX A: CORRELATED BATH

In the main text, we avoided various correlations that can
arise between bath-induced motions. In this appendix, we cure
this neglect. We adopt the following shorthand notation, where
the three coupling matrices ai

αβ , v i,z
αβ , andw i,z

αβ are three compo-

nents y = 1, 2, 3 of general coupling Y i,z,y
αβ , i.e., Y i,z,1

αβ = δz0ai
αβ ,

Y i,z,2
αβ = v i,z

αβ , and Y i,z,3
αβ = w i,z

αβ . Similarly the coupling con-

stants are ξ1
k,i,z = ιk,iδz0, ξ2

k,i,z = κk,i,z, and ξ3
k,i,z = ζk,i,z. The

system-bath Hamiltonian [Eq. (13)] has the form

ĤSB = ~
∑
αβ,k

N∑
i=1

∞∑
z=0

3∑
y=1

Ωk

(
B̂kY i,z,y

αβ ξ
y
k,i,z + h.c.

)
|α〉 〈β |,

(A1)
where the index z formally runs over all non-negative inte-
gers assuming Y i,0,2

αβ = Y i,0,3
αβ = 0. We next define the general

spectral density as

Yy,y′

i,z;i′,z′(x) ≡
∑

k

Ω
2
kξ

y
k,i,zξ

y′

k,i′,z′δ(x −Ωk). (A2)

In the main text, we assumed the uncorrelated situa-
tion Yy,y′

i,z;i′,z′ ∝ δyy′δii′δzz′ . Spectral densities of Eq. (20) are

then recovered as Ai(x)=Y1,1
i,0;i,0(x), Vi,z(x)=Y2,2

i,z;i,z(x), and

Wi,z(x) = Y3,3
i,z;i,z(x). The correlations between non-local

(cross-chromophore) fluctuations are accounted by i , i′

terms, correlations between electronic-bath couplings and
(quadratic) vibrational-bath couplings fluctuations relate to
terms y, y′, and finally terms z, z′ account for the corre-
lations between different vibrational modes.

In these general situations, the matrix of the correlation
function Eq. (28) for diagonal noise

C ′′αβ(ω) =
∑
i,i′
z,z′
y,y′

Y i,z,y
αα Y i′,z′,y′

ββ

[
Yy,y′

i,z;i′,z′(ω) − Yy,y′

i,z;i′,z′(−ω)
]

and rates for transport [Eq. (19)] for off-diagonal noise

Rνν,δδ = −2
∑

i,i′,z,z′,y,y′

{
N(εν − εδ)Yy,y′

i,z;i′,z′(εν − εδ)

+ (N(εδ − εν) + 1)Yy,y′

i,z;i′,z′(εδ − εν)
}
Y i,z,y
νδ Y i′,z′,y′

νδ

(A3)

can be implemented keeping the rest of the algorithm unaf-
fected.

APPENDIX B: LINE-SHAPE FUNCTION FOR
OVERDAMPED SPECTRAL DENSITY

In this appendix, we specify the line-shape function gβα(t)
as defined by Eq. (31) for the overdamped spectral densities of
Eqs. (20). To that end, we combine Eq. (29) with (31) and recall
spectral densities Vi,z(ω), Wi,z(ω), Ai,z(ω) of the overdamped
Brownian oscillator [Eq. (20)]. For t > 0,

gβα(t) = g′βα(t) + ig′′βα(t), (B1)

where the imaginary part representing shifts is

g′′βα(t) = −
∑

i

ai
ααai

ββλA(e−Λ
i
At + Λi

At − 1)/Λi
A

−
∑
i,z

v i,z
ααv

i,z
ββλ

i,z
V (e−Λ

i,z
V t + Λi,z

V t − 1)/Λi,z
V

−
∑
i,z

w i,z
ααw

i,z
ββλ

i,z
W(e−Λ

i,z
Wt + Λi,z

Wt − 1)/Λi,z
W (B2)

and the real part representing broadening is

g′βα(t) =
∑

i

ai
ααai

ββλ
i
A




coth *
,

~Λi
A

2kBT
+
-

e−Λ
i
At + Λi

At − 1

Λi
A

+
4Λi

AkBT

~

∞∑
n=1

e−νnt + νnt − 1

νn(ν2
n − Λ

i
AΛ

i
A)




+
∑
i,z

v i,z
ααv

i,z
ββλ

i,z
V




coth *
,

~Λi,z
V

2kBT
+
-

e−Λ
i,z
V t + Λi,z

V t − 1

Λ
i,z
V

+
4Λi,z

V kBT

~

∞∑
n=1

e−νnt + νnt − 1

νn(ν2
n − Λ

i,z
V Λ

i,z
V )




+
∑
i,z

w i,z
ααw

i,z
ββλ

i,z
W




coth *
,

~Λi,z
W

2kBT
+
-

e−Λ
i,z
Wt + Λi,z

Wt − 1

Λ
i,z
W

+
4Λi,z

WkBT

~

∞∑
n=1

e−νnt + νnt − 1

νn(ν2
n − Λ

i,z
WΛ

i,z
W)




, (B3)

where νn =
2πnkBT
~ are Matsubara frequencies. The line-shape function at negative times is eventually defined by the relation

gβα(−t) = g∗βα(t).

APPENDIX C: BLEACH, ESA, AND DOUBLE COHERENCE PATHWAYS

In this appendix, we expand the expressions for response functions of ground state bleach, excited state absorption, and
double coherence pathways as represented in Fig. 3. The derivation is completely parallel to that of the emission pathways in
Eq. (48) and yields

SD
3 (t1, t2, t3) =

∑
α,γ∈G

∑
β,δ∈E

µαδGδα,δα(t3)µ†δγGγα,γα(t2)µγβGβα,βα(t1)µ†βα ρeq,αF(4)
δ,γ,β,α(t1 + t2 + t3, t1 + t2, t1, 0),

SD
4 (t1, t2, t3) =

∑
α,γ∈G

∑
β,δ∈E

µγβGβγ,βγ(t3)µ†βαGαγ,αγ(t2)µ†δγGαδ,αδ(t1)µαδ ρeq,αF(4)
δ,γ,β,α(0, t1, t1 + t2 + t3, t1 + t2),
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SD
5 (t1, t2, t3) = −

∑
α∈G

∑
β,δ∈E

∑
γ∈F

µδγGγδ,γδ(t3)µ†γβGβδ,βδ(t2)µαδGβα,βα(t1)µ†βα ρeq,αF(4)
δ,γ,β,α(t1, t1 + t2 + t3, t1 + t2, 0),

SD
6 (t1, t2, t3) = −

∑
α∈G

∑
β,δ∈E

∑
γ∈F

µδγGγδ,γδ(t3)µ†γβGβδ,βδ(t2)µ†βαGδα,δα(t1)µαδ ρeq,αF(4)
δ,γ,β,α(0, t1 + t2 + t3, t1 + t2, t1),

S7(t1, t2, t3) = −
∑
α∈G

∑
β,δ∈E

∑
γ∈F

µδγGγδ,γδ(t3)µαδGγα,γα(t2)µ†γβGβα,βα(t1)µ†βα ρeq,αF(4)
δ,γ,β,α(t1 + t2, t1 + t2 + t3, t1, 0),

S8(t1, t2, t3) =
∑
α∈G

∑
β,δ∈E

∑
γ∈F

µαδGδα,δα(t3)µδγGγα,γα(t2)µ†γβGβα,βα(t1)µ†βα ρeq,αF(4)
δ,γ,β,α(t1 + t2 + t3, t1 + t2, t1, 0),

and, for transport pathways,

SO
3 (t1, t2, t3) =

∑
α,γ∈G
α,γ

∑
β,δ∈E

µγδGδγ,δγ(t3)µ†δγGγγ,αα(t2)µαβGβα,βα(t1)µ†βα ρeq,α

×F(6)
γ,δ,γ,α,β,α(t1 + t ′, t1 + t2 + t3, t1 + t2, t1 + t ′, t1, 0),

SO
4 (t1, t2, t3) =

∑
α,β∈G
α,β

∑
γ,δ∈E

µβγGγβ,γβ(t3)µ†γβGββ,αα(t2)µ†δαGαδ,αδ(t1)µαδ ρeq,α

×F(6)
δ,α,β,γ,β,α(0, t1, t1 + t ′, t1 + t2 + t3, t1 + t2, t1 + t ′),

SO
5 (t1, t2, t3) = −

∑
α∈G

∑
β,γ∈E
γ,β

∑
δ∈F

µγδGδγ,δγ(t3)µ†δγGγγ,ββ(t2)µαβGβα,βα(t1)µ†βα ρeq,α

×F(6)
β,γ,δ,γ,β,α(t1, t1 + t ′, t1 + t2 + t3, t1 + t2, t1 + t ′, 0),

SO
6 (t1, t2, t3) = −

∑
α∈G

∑
β,γ∈E
γ,β

∑
δ∈F

µγδGδγ,δγ(t3)µ†δγGγγ,ββ(t2)µ†βαGαβ,αβ(t1)µαβ ρeq,α

×F(6)
β,γ,δ,γ,β,α(0, t1 + t ′, t1 + t2 + t3, t1 + t2, t1 + t ′, t1). (C1)

Expressions for S3, S4, S5, and S6 have been used for simulating 2D lineshapes in Figs. 5 and 6.

APPENDIX D: HIGHER PHASE FACTORS

In this appendix, we calculate the cumulative phase factors F(4) and F(6) [Eqs. (49) and (50)] for the third-order response
functions. Using the same arguments as given above Eq. (43) for F(2), these higher functions can also be significantly simplified
for the common case ∆̂α = 0. It can be figured out exactly for the Gaussian bath by using the second cumulant. After a bit of
algebra, this yields

F(4)
δ,γ,β,α(τ4, τ3, τ2, τ1)

����∆̂α=0
= exp {−gββ(τ21) − gγγ(τ32) − gδδ(τ43) + gβγ(τ21) + gβγ(τ32) − gβγ(τ31) − gβδ(τ32)

− gβδ(τ41) + gβδ(τ31) + gβδ(τ42) + gγδ(τ32) + gγδ(τ43) − gγδ(τ42)} (D1)

and

F(6)
κ,η,δ,γ,β,α(τ6, τ5, τ4, τ3, τ2, τ1)

����∆̂α=0
= exp

{
−gββ(τ21) − gγγ(τ32) − gδδ(τ43) − gηη(τ54) − gκκ(τ65)

− gβγ(τ31) + gβγ(τ32) + gβγ(τ21) − gβδ(τ41) + gβδ(τ42) + gβδ(τ31) − gβδ(τ32) − gβη(τ51)

+ gβη(τ52) + gβη(τ41) − gβη(τ42) − gβκ(τ61) + gβκ(τ62) + gβκ(τ51) − gβκ(τ52) − gγδ(τ42)

+ gγδ(τ43) + gγδ(τ32) − gγη(τ52) + gγη(τ53) + gγη(τ42) − gγη(τ43) − gγκ(τ62) + gγκ(τ63)

+ gγκ(τ52) − gγκ(τ53) − gδη(τ53) + gδη(τ54) + gδη(τ43) − gδκ(τ63) + gδκ(τ64) + gδκ(τ53)

− gδκ(τ54) − gηκ(τ64) + gηκ(τ65) + gηκ(τ54)
}
. (D2)

The general form ∆̂α , 0 of F(4), F(6) requires adding corrections to Eq. (D2) for the initial state system-bath correlations as

F(4)
δ,γ,β,α(τ4, τ3, τ2, τ1) = F(4)

δ,γ,β,α(τ4, τ3, τ2, τ1)
����∆̂α=0

exp
{
−gαα(τ41) + gαβ(τ21) + gαγ(τ31) − gαγ(τ21)

+ gαδ(τ41) − gαδ(τ31) + gβα(τ41) − gβα(τ42) + gγα(τ42) − gγα(τ43) + gδα(τ43)

+ irαβτ12 + irαγτ23 + irαδτ34 + irαατ41
}

(D3)
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and

F(6)
κ,η,δ,γ,β,α(τ6, τ5, τ4, τ3, τ2, τ1) = F(6)

κ,η,δ,γ,β,α(τ6, τ5, τ4, τ3, τ2, τ1)
����∆̂α=0

exp
{
−gαα(τ61) + gαβ(τ21) + gβα(τ61) − gβα(τ62)

+ gαγ(τ31) − gαγ(τ21) + gγα(τ62) − gγα(τ63) + gαδ(τ41) − gαδ(τ31) + gδα(τ63) − gδα(τ64)

+ gαη(τ51) − gαη(τ41) + gηα(τ64) − gηα(τ65) + gακ(τ61) − gακ(τ51) + gκα(τ65) + irαβ(τ12)

+ irαγτ23 + irαδτ34 + irακτ45 + irαητ56 + irαατ61
}
. (D4)

These expressions should be inserted into Eqs. (48) to complete the simulation protocol.

1S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).
2D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
3M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009).
4Y.-C. Cheng and G. R. Fleming, J. Phys. Chem. A 112, 4254 (2008).
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