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Abstract
The relation between the infinite-time asymptotic regime behaviour of a Davies-
like kinetic equation and the asymptotic behaviour of the nonapproximated
reduced density matrix ρ is investigated. The asymptotic form of ρ determined
from the second-order kinetic equation for some typical transfer model is found
to be unstable with respect to higher-order contributions to the relaxation terms
of the master equation. The relation between results obtained using the analysis
of a power series in the energy domain and those given by Davies-like scaling
will also be discussed.

PACS numbers: 05.30.−d, 03.65.Ca

1. Introduction

There is a widespread opinion that solutions to kinetic equations naturally steer for the
canonical distribution whenever the transfer rates are correctly calculated. In fact, such
a statement was verified in the past for some not very complicated model systems in the
van Hove (weak coupling) limit [1]. On the other hand, no general rigorous formulation was
found so far in this direction and there are even some recent results, where not very complicated
transfer phenomena models treated using generalized master equations display completely
‘noncanonical’ behaviour in the asymptotic regime [2, 3]. The cited papers use the rigorous
Davies scaling theory [4, 5], but not necessarily the van Hove limit [6]. The main difference as
compared to the van Hove is that what is scaled is not only the dynamics of the bath-induced
relaxation, but also a part of dynamics of the system itself (as described by the Hamiltonian
HS of the system). This formal approach is physically reflected as ‘going beyond the
weak-coupling limit’. A general motivation for such a choice of scaling is provided in [7, 8].
It is an attempt to describe a specific physical regime of the undisputable interest, the situation
when the rates of the internal system dynamics are not infinitely faster than the rates of the
bath-induced relaxation processes inside the system, but of a comparable magnitude.
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One should be reminded of the fact that the van Hove limit means physically to decrease
formally the system–bath coupling, reducing thus the rates of the bath-assisted processes.
Thus, the bath-assisted processes are necessarily considered to be infinitely slower than those
of the internal system dynamics. The very existence of such bath-assisted processes is then
formally (though just in the lowest order) preserved by increasing simultaneously the time
unit to infinity, in such a way that the product of the time unit and the squared system–bath
coupling remains constant. Clearly, such a regime cannot be applied to the situation when the
bath-assisted processes become commensurable with those of the internal system dynamics.

The modified Davies scaling [7], treating both the system–bath coupling and the terms
in HS on equal footing (as a scaled part of the total Hamiltonian), preserves the relative
magnitude of such competing processes well. This outlines its physical motivation. One
should realize here that in this scaling approach, the formally decreasing rates of the internal
as well as bath-assisted processes are again compensated by the increase of the time units
but not, as in the singular reservoir case [9, 10], by any simultaneous unphysical limit of,
e.g. the bath spectrum. One could also comprehend such a scaling from another point of
view. This approach may be followed as a useful way to calculate the system dynamics,
when the system Hamiltonian HS is complicated. In order to obtain the relaxation rate in the
van Hove limit approach exactly, one must, in fact, be able to diagonalize HS . But this case
is not quite usual. Then one usually calculates the relaxation rate using some ‘dominant
part’ of the system Hamiltonian, and then attaches the remaining terms, considered as not
very strong perturbation. It is then understood as an approximate description (see, e.g.,
chapter XII, par 104 in [11]). The relation to the exact result can be obtained, e.g. by
introducing a ‘nonstandard’ scaling. Such approximations provide further motivation of the
present work.

The formal device for the treatment is a nonconvolution (convolutionless) generalized
master equation (TCL-GME) using various scaling techniques in the present work. Starting
from the GME power series in a scaling parameter we are going to demonstrate that though
the scaling technique results are sometimes reflected as ‘exact’, they are, in fact, only the time-
domain version of the finite (second) order power series in the energy domain. Consequently,
Davies theorems do not reproduce the asymptotic results better than the analysis of the finite-
order perturbational series of the GME coefficients.

The asymptotic state conditions in the TCL-GME formalism are finally reduced to a linear
algebraic problem. We thus obtain the asymptotics of ρ as an eigenvector (in the Liouville
space) related to the eigenvalue with the zero real part of a projected Liouville superoperator.
Such a vector exists, this follows from the fact, that GME preserves the trace of the density
matrix. Whenever just one such vector exists, it is usual to regard it as asymptotics of ρ of the
system (on the grounds of the assumption that, for physical reasons, no solution increasing in
the time infinity occurs and the other eigenvectors are related to the exponentially decaying
solutions). However, this step is not justified from the point of view of the perturbation theory.
If there is another eigenvalue with the real part only slightly different from zero (for example, it
differs from zero as in the fourth-order in perturbation parameter), the result can substantially
change after computing the fourth order terms in relaxation coefficients, and the change of
the zero-eigenvector may be quite arbitrary. More precisely, let us designate the projected
Liouvillean (for t → ∞) evaluated to nth order Ln

P,∞. Moreover, we designate ρ2, ρ4, . . . the
following vectors in the Liouville space of the system

Ln
P,∞ρn = 0.

We will argue that there is no sufficient reason, in our case, to believe that

lim
λ→0

ρ2(λ) = lim
λ→0

ρ4(λ).
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We also show that such a phenomenon has its reflection in the Davies theorems concerning
the solution of TCL-GME in the time domain [4, 5]. The Davies theorems state in a
liberal transcription: ‘The evolution calculated in the second-order theory is a quite good
approximation. For any finite interval of rescaled time and the limit of the scaling parameter λ

going to zero, the second-order TCL-GME yields the correct result’. What is the problem: the
‘topology’ given by the Davies limit is too weak to distinguish between relaxation with rates
proportional to e−λ4t and the stationary solution whenever the allowed time interval is limited
as in the Davies theory [1, 4, 5] by times proportional to λ−2. In fact, the Davies theorems as
well as any rigorous mathematics of this type remain unjustified in the infinite time domains.
Often found applicability of kinetic theories beyond the so-called kinetic regime [12, 13], in
particular in the dc limit, thus remains based on just a good belief.

Finally, let us make a brief comment concerning the relation to the van Hove limit.
One could expect some objections with arguments such as the following: ‘You should not
exaggerate the meaning of the above statements as no such crazy unstable behaviour was
observed in the case of the van Hove limit. Perhaps the van Hove limit is in this sense correct.
It thus provides the ‘proof’ that the canonical density matrix is always the proper asymptotics
of the time evolution so that the only right way is to treat the system Hamiltonian without any
scaling and to scale only system–bath coupling. The asymptotics of ρ is well known and the
arbitrary physically correct model and its treatment must reproduce it’.

We do not consent to this opinion. Let us briefly sketch an easy argument against the
correctness of such an argumentation. Consider a finite-dimensional linear operator with a
twofold degenerate eigenvector. Then the degeneracy is broken introducing a slight difference
in their eigenvalues (operating on the subspace of the ‘degeneracy’). We have two new
nondegenerate eigenvectors, but the difference between their eigenvalues is small. If we
further introduce a perturbation, it follows from the theorems of the perturbation theory
that one finds the correction for the spectral decomposition of the perturbed operator as the
power series in the neighbourhood of the eigenvalues. But the radius of convergence is
intimately connected with the difference between the eigenvalues (e.g. [14, 15] for self-adjoint
operators). In fact, the perturbational treatment is applicable if the perturbation is weaker than
the eigenvalue difference [11]. But we treat just the opposite case. So we cannot agree with
the attitude that the van Hove limit is resistant against the above problems. Moreover, our
argumentation could be modified to apply for the case of an external field influence, where no
‘prescribed’ asymptotics is at hand.

2. Model

2.1. Hamiltonian

The system we will deal with is described by a model Hamiltonian

H = HS + HB + HS−B (1)

where

HS = λ2Jh̄(c
†
0c1 + c

†
1c0)(b + b†) + εh̄c

†
1c1 + h̄ω(b† + γ c

†
0c0)(b + γ c

†
0c0)

HB =
N∑

k=1

h̄�kB
†
kBk HS−B = λ

1√
N

N∑
k=1

h̄�kGk(b
†Bk + B

†
kb).

At first, we comment on the part of the Hamiltonian, which represents the dynamics of
the system with no attached bath. There are two sites labelled 0,1 here. The creation and
annihilation operators c

†
0,1, c0,1 are related just to this site variable. As far as one particle



5818 F Šanda

is considered we do not need to introduce (anti)commutational relations. Moreover, the
vibrational levels in the harmonic-potential approximation are considered at each site. This
potential is also described in the standard Fock formalism using creation and annihilation
operators b†, b. These obey, according to their vibrational nature, bosonic commutational
relations. Centres of the harmonic potential ascribed to different particle positions differ. This
feature of the model is expressed as a polaron shift γ on site 0. The energy of the site 0 is
taken as a zero-energy level. Furthermore, we allow a coherent transfer connected with the
particle transition between the sites, which is described via the terms proportional to J.

The bath is represented by a set of N harmonic oscillators (B†, B). The system–bath
interaction effects are caused by the last term of the Hamiltonian. In fact, we do not mean
that the behaviour of the system (referred to later in the text) we have just introduced is
intimately related to the specific form of the bath. The only important feature is that the
system–bath coupling acts between vibration levels, so the leading terms of a relaxation tensor
can only cause the relaxation between different vibrational levels (and of course, dephasing
effects among these levels connected with this relaxation), but not incoherent particle transfers
between sites 0 and 1. The problem we would like to examine has more general consequences.
There is a combination of strictly coherent transfer processes (induced by HS only) between
particle sites as well as vibrational levels inside the system interfering with bath-assisted
incoherent transfer processes between the same vibrational levels of the system. The point
with respect to what follows below is that incoherent process coefficients in the relaxation
tensor conform to the rules of canonical thermodynamic behaviour including detailed balance
while, on the other hand, the coherent elastic processes break this behaviour (such processes
are naturally symmetric). Moreover, in recent times, models analogical to (1) were reported
[2, 16] to have behaviour in no sense close to the canonical one. The major question of
the present paper is whether such calculations are sufficiently ‘rigorous’ in the infinite-time
region.

2.2. Master equation

We outline the appropriate technical devices for any treatment of the open system interacting
with the bath. The use of the wavefunction of the system is impossible, because such
an object does not allow the introduction of any averaging procedure over the bath owing
to its nonlinear relation to the measurable quantities. The appropriate theoretical object
which enables removing any unnecessary information about details of the bath evolution
(such information is unnecessary for arbitrary measurements on the system, i.e. quantities
represented by operators operating on the Hilbert space of the system only) is the reduced
density matrix of the system. Techniques to project off the bath variables are well known
as generalized master equations (GME). Their application in the open system treatment is
standard [17]. These equations have two conceptually different forms, the time-convolution
(TC-GME) and time-convolutionless (TCL-GME) one. These forms are equivalent until we
keep exact formulae; however, they can result in nonequivalent approximations. General
reasons for the selection of one of the forms were extensively discussed (see some relevant
papers [18, 19]). The works we refer to use TCL-GME; moreover, there are several other
dominant reasons to prefer here the TCL-GME formalism.

1. The treatment of long-time asymptotic values is simpler in time local equations.

2. TCL-GME provides a definite order in the perturbation series (in time-nonlocal equations
this point can be a little subtle). For TC-GME it seems to be sufficient to investigate
only its Markov approximation. The relation between the Born–Markov approximation
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of TC-GME and the second-order approximation of TCL-GME we would like to discuss
elsewhere.

3. We expect the asymptotic solution to be stationary. So, there is, under the convolution
integral, no time dependence except for memory, and the stationary condition becomes,
in fact, in any case ‘convolutionless’.

However, the equivalent variants are to work with the Nakajima–Zwanzig identity [20–22] or
in the Tokuyama–Mori formalism [23]. The Tokuyama–Mori formalism is used in this paper.

Further theory is formulated in the Liouville space (i.e. space of operators on the Hilbert
space) derived from the Hilbert space we dealt with before. The set of all operators on
the Hilbert space of the system is chosen as the set of observed quantities. We choose the
projection superoperator (operator on the Liouville space) P with the idempotency property
P2 = P in the following way:

P . . . =
∑
αγ

|α〉〈γ |Tr(|γ 〉ρB〈α| . . .).

Here ρB is the initial density matrix of the bath. This choice enables us later to remove the
initial condition term. Then the Heisenberg equations of motion for operators are reduced to the
set of equations for matrix elements of the system density matrix called the Tokuyama–Mori
generalized master equation:

d

dt
ραγ (t) =

∑
δβ

iωαγ,δβ (t)ρδβ(t) + fαγ (t) (2)

with the following exact expressions for coefficients:

iωαγ,δβ (t) = iTr(|δ〉ρB 〈β|L(|γ 〉〈α|)) − Tr

(
|δ〉ρB〈β|

∫ t

0
e−iLτP eiQLτ dτ

×
[

1 − Q
∫ t

0
e−iLτPLeiQLτ

]−1

QL(|γ 〉〈α|)
)

(3)

and

fαγ (t) = Tr

(
�(0) eiQLt

[
1 − Q

∫ t

0
e−iLτP iL eiQLτ dτ

]−1

Q iL|γ 〉〈α|
)

(4)

where L . . . = 1
h̄

[H, . . .] is the Liouville superoperator, Q = 1 − P . With the initially
statistically independent system and the bath and, simultaneously, the initial bath density
matrix T rS�(t = 0) equal to ρB , the inhomogeneous initial condition term fαγ (t) in (4) and
(2) equals zero. Further, the initial bath density matrix is assumed to be canonical

ρB = e−βT HB

T rBe−βT HB
.

So, the coefficients ωαγ,δλ(t) are the only ones to calculate. The part of Hamiltonian (1)
independent of the scaling parameter λ is designated as H0 (and simultaneously the related
Liouville superoperator asL0) and the power series is provided in the perturbational parameter.
Up to the second order it yields

iωαγ,δβ (t) = iTr(|δ〉ρB 〈β|L(|γ 〉〈α|)) − Tr

(
|δ〉ρB〈β|

∫ t

0
e−iL0τPL eiQL0τ dτQL(|γ 〉〈α|)

)
≡ −iLc

αγ,δβ − Rαγ,δβ . (5)
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For further development we build an appropriate base in the Hilbert space of the system. We
label each base vector with two indices; the first one refers to the site variable, the second
one to the vibrational level. Two different vibrational states (normal and polaron shifted) are
introduced,

|µ〉 = 1√
µ!

(b†)µ|0〉 |µ′〉 = 1√
µ′!

(b† + γ )µ|0′〉 |0′〉 = exp γ (b − b†)|0〉.
These vectors in the factorspace of vibrational states diagonalize the vibrational part of the
Hamiltonian over site 1 or 0, respectively. We specify the base of the Hilbert space of the
system we will refer to as

|1µ〉 ≡ |1〉|µ〉 |0µ〉 ≡ |0〉|µ′〉.
We explicitly emphasize that in the second definition on the left-hand side, there is no prime
present. A further step in the development of the theory is to take time limit of the Tokuyama–
Mori coefficients to infinity (t → ∞). This step is usually considered as omitting the
short-time transient memory effects. In agreement with the fact that we are interested in the
infinite-time limit, we have no problem in introducing this step and our formulae remain exact.
We start the evaluation of the coefficients in (5) with the relaxation tensor R (the second term
on the right-hand side of (5)) describing relaxation processes. It yields

R1ν,1µ,1α,1β = R0ν,0µ,0α,0β

= λ2 π

N

∑
k

�2
kG

2
kδ(ω − �k){δανδβµ[nk(µ + ν + 2) + (nk + 1)(µ + ν)]

− 2δν+1,αδµ+1,β(nk + 1)
√

(µ + 1)(ν + 1) − 2δν−1,αδµ−1,βnk

√
µν}

R0ν,1µ,0α,1β = λ2 π

N

∑
k

�2
kG

2
kδ(ω − �k){δανδβµ[nk(µ + ν + 2) + (nk + 1)(µ + ν)]

− 2δν+1,αδµ+1,β(nk + 1)
√

(µ + 1)(ν + 1) − 2δν−1,αδµ−1,βnk

√
µν

+ γ [δµ−1,βδν,αnk

√
µ − δν+1,αδµ,β(nk + 1)

√
(ν + 1)

+ δν,αδµ+1,β(nk + 1)
√

(µ + 1) − δν−1,αδµ,βnk

√
ν]}

R1ν,0µ,1α,0β = R∗
0µ,1ν,0β,1α

(6)

where nk designates the equilibrium mean number of phonons

nk = 〈B†
kBk〉 = [exp h̄βT �k − 1]−1. (7)

The remaining coefficients equal zero. The last equality in (6) is only the consequence of the
fact that the density matrix is self-adjoint. We attach a brief comment concerning the relaxation
tensor. The relaxation coefficients with identical site indices are, in fact, independent of the
site index but one must have in mind the difference in connected vibrational bases that we
defined above. If one omits for a while the coherent processes described by the first term in (5)
and the relaxation is considered only at one site, the process steers for the canonical density
matrix of the oscillator and the behaviour is qualitatively compatible with other widely used
types of relaxation (Landau–Teller relaxation [24]). It is worth noting that no direct relaxation
coefficients responsible for the dephasing decay of ρ0α,1α appear. In particular, in the case
γ = 0 one can verify that

∑
α ρ0α,1α is preserved. Such decay, if present here, must come

from more complicated effects of competition between, and collaboration of the coherent and
incoherent channels.

The first (coherent) term in (5) is formed by the matrix elements of the internal system
Hamiltonian

h̄Lc
i,j,l,m = 〈i|HS |l〉δj,m − δi,j 〈m|HS |j 〉.
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3. The asymptotic regime investigation

3.1. Numerical analysis of asymptotic spectrum

In the previous section we have prepared all the important pre-calculations, which are standard.
The complicated problem of the time development given by the open system Hamiltonian (1)
was reduced into a linear time-local problem formulated in the Liouville space of the system.
In this subsection the infinite time limit of the solution to the second-order approximation
of Tokuyama–Mori equation (5) is investigated. As a consequence of the time-independent
character of the coefficients calculated above, theorems of linear algebra yield a simple picture
of the solution. The number of vibration levels is restricted to a finite value for simplicity. This
step cannot have very important physical relevance. In fact, the restriction can be introduced in
the Hamiltonian (1) as an additional model assumption, then this step is exact. Consequently,
the solution of the finite set of linear differential equations is given by a linear combination
of exponential functions with possible polynomial prefactors and arguments consisting of
products of time with eigenvalues of the matrix problem∑

δ,β

{−iLc
αγ,δβ − Rαγ,δβ

}
ρδ,β(η) = ηραγ (η). (8)

For physical reasons, we assume that no terms increasing without limits in the time infinity
occur. So, no eigenvalue of (8) can have the positive real part; moreover, no eigenvalue with the
real part equal to zero is connected to the polynomial function prefactor. The further comment
is that all the terms related to eigenvalues with the negative real part fall to zero with time going
to infinity. So, the only eigenvalues relevant for the infinite-time limit are those with the real
part equal to zero. We call S(n)(λ) subspace spanned on the kernel subspaces connected with
eigenvalues with the zero real part of the nth order approximation of the projected Liouville
superoperator (3). Moreover, we use the same symbol without λ-dependence for the following
limit subspace

S(n) ≡ lim
λ→0

S(n)(λ).

One zero-eigenvalue eigenvector always exists because of the identity∑
α

{−iLc
αα,δβ − Rαα,δβ

} = 0 (9)

stemming from (3) and implying that the time-development, as described by (2), preserves
total probability

∑
α ραα(t). This identity is preserved in potentially any order of expansion of

the above coefficients. Hard difficulties occur in establishing asymptotic treatment whenever
dimS(2) > 1. Then the asymptotical solution depends on the initial conditions; moreover, the
deficiency concerning the justification of Born approximation and long-time limit of relaxation
coefficients becomes apparent.

Therefore, we ask for evidence of the nondegeneracy ofS(2)(λ). This is usually done by the
scrutiny of the simulation of the system time evolution of ρ in a given approximation starting
from different initial conditions, and a decision on whether the asymptotics of ρ depends
on initial conditions or not. As we are interested in the long-time domain only we prefer
another equivalent method. It is a careful evaluation of eigenvalues and eigenvectors. We
have used this variant of calculation for many parameters of model (1), and we found the zero
eigenvalue to be almost always nondegenerate (with exception of very special and physically
understandable choices). The existence of more than single zero-eigenvalue solutions to (8)
was also recently rejected by direct numerical studies for a parallel model reported in [3].

Thus, we have some reason to believe, in the most usual variant, in the nondegeneracy of
the zero-eigenvalue eigenvector and, thus, in the unique asymptotic form of the density matrix
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as prescribed by the finite-order perturbation theory (in finite coupling to the bath) extended
to the long-time region. The question of the presence of near-to-zero eigenvalues of (8) is,
however, a somewhat different problem.

In particular we observe another problem which should be solved: Is the nondegeneracy
(dimS(2) = 1) described above really sufficient evidence for the stability of the asymptotic
behaviour against higher-order contributions in the power series of (3) , which is usually silently
assumed? Let us consider that there is a further eigenvalue η which quickly approaches zero
when the perturbational parameter is limited to zero λ → 0. If the dependence

η(λ) = −const × λk (10)

in the neighbourhood of λ = 0 has an exponent k, we can imagine such a kth order correction of
(5) which causes the strict instability S(n) against n. This of course also means the instability
of S(n)(λ) in the neighbourhood of λ = 0. In other words, such a correction changes the
asymptotic behaviour in a very dramatic way. Our approximation is of the second order (it has
a fourth-order correction). So we have to take care of near-to-zero eigenvalues with k � 4.

This problem is considered for our model (1) in approximation (5). We numerically
treated the spectrum of the second-order approximation of the Liouville superoperator (8) for
a number of parameters of the model. Of course, the results appreciably depend on the actual
parameters, but we can make some conclusions quite generally. Some eigenvalues have their
real part quite close to zero, and more importantly, the latter fall very rapidly to zero when
the perturbational parameter is limited to zero. This point need not be necessarily visible for
ordinarily used fixed values of λ.

The most important property of such eigenvalues is their behaviour in the neighbourhood
of λ = 0. We tried to find the exponent k from (10) for the second smallest eigenvalue η1,
which is near to zero, for our particular problem. We examined the η1(λ) dependence for
a number of parameters and in figures 1 and 2, typical results of our treatment are shown.
The actual model parameters are given in figure captions. In order to envisage a polynomial
dependence we draw −log λ versus − log(−η1) graph and its derivative. One can easily
realize from (10) that coefficient k is given by a tangent in the asymptotical region in figure 1,
and by value of the asymptotics in figure 2 (see the ‘figure caption’ for details). The imaginary
part of η1 is 0 within numerical accuracy (13 digits). The main results may be summarized as
follows:

• Numerically, we have verified that the zero eigenvalue is not degenerated. It proves the
unique asymptotics of (5).

• The linearity of figure 1 in the asymptotical region proves the anticipated formula (10)
and that, more importantly, we investigated the region of λ where the asymptotical term
dominates.

• We determined numerically the exponent to be equal to 6. Considering the exponent to
be unavoidably a rational number corresponding to theorem XII.2 of [14], we conclude
that there is an eigenvalue exactly proportional to λ6.

The reader interested in details concerning the numerical implementation is referred to
appendix A.

3.2. Analytical treatment of the stationary condition

In this subsection we only care about those results, which can be proved to be stable against
the arbitrary fourth-order correction of (5). First of all, we are not going to perform the real
evaluation of higher order contributions here. It appears to be straightforward, but technically
extremely extensive calculation. We take into account an arbitrary possible fourth order
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–η
1)

Figure 1. We plot [−ln (−η1)] versus [− ln (λ)] (η1 being the second smallest, in the absolute
value, eigenvalue of the projected Liouvillean (8)) for model (1) in the text. One can prove
that the order of leading term of η1(λ) dependence is given by the steepness of this graph in
the [−ln (λ)] → ∞ region. The polynomial character of the dependence (10) is proven by the
linearity of the graph in this region. Model parameters: ε = 0.2, ω = 1.0, γ = 0.2, J = 0.1,

h̄βT = 1.0, π
N

∑
k �2

kG
2
kδ(ω − �k) = 1.0. The given density of states at � = ω enables the

straightforward calculation of relaxation tensor with respect to (7): π
N

∑
k �2

kG
2
kδ(ω − �k)nk =

1
e−1 and π

N

∑
k �2

kG
2
kδ(ω − �k)(nk + 1) = e

e−1 .

d 
ln

(–
η 1)

d 
ln

(λ
)

–ln(λ)

7

6

5

4

3
0 1 2 3

Figure 2. The derivative d ln (−η1)
d ln (λ)

of figure 1 versus [−ln (λ)]. One can more precisely see

the linearity of figure 1. For λ � e−1 the derivative is nearly constant, which again proves the
polynomial character of (10). Moreover, we clearly see the leading term order k in (10) to be equal
to 6. (Limit of the graph in the [−ln (λ)] → ∞ region.) The parameters are as above.

result. Several ways are possible for the analytical investigation. For example, one may
discuss exactly how some eigenvalue depends on the perturbational parameter, in parallel to
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the previous subsection but it is not an analytical work ‘with pen and paper’ only. The way we
are going to follow is less ambitious. We take care only of strictly zero eigenvalues η = 0 (with
no imaginary part). The point is to expand explicitly the asymptotic value of the density matrix
into the power series. As we have anticipated, the right-hand side of eigenvector equation (8)
is substituted by zero. The important point is that any coefficient can have a correction O in
the fourth order. The only accepted results are those that are independent of O,∑

δ,β

{−iLc
αγ,δβ − Rαγ,δβ + λ4Oα,γ,δβ

}
ρδ,β(0) = 0 (11)

ρ(0) =
∞∑
i=0

λiρ(i). (12)

Consequently, only the zeroth order of (11)∑
δ,β

−iLc(0)
αγ,δβρ

(0)
δ,β = 0

and the second order of (11)∑
δ,β

{
−iLc(2)

αγ,δβ − R
(2)
αγ,δβ

}
ρ

(0)
δ,β +

∑
δ,β

−iLc(0)
αγ,δβρ

(2)
δ,β = 0

form the relevant system of conditions. The reader is entreated for the comprehension of the
delicate but constitutive difference between (11) and λ → 0 limit of (8).

The central question is whether a uniquely given solution is obtained at least in the zero-
order (in the density matrix series ρ(0)). If not, then obtaining a unique result by calculation
omitting higher-order contributions to the GME coefficients is irrelevant. One should realize
that such a result is equivalent to the statement that there is another eigenvalue of (8) near zero
(differing from 0 in the fourth or higher order). For simplicity, we exclude some incidental
degeneracies by the requirement

ε 	= s · ω

for s being an arbitrary integer. Application of the thesis formulated above yields: for i 	= j

(either in the site or vibrational index)

ρ
(0)
i,j = 0

while otherwise

ρ(0)
aα,aα = Ca

( n

n + 1

)α

. (13)

C0, C1 are two arbitrary constants. (We bear in mind that we must normalize the density
matrix, so in fact, C0 + C1 = (n + 1)−1.) We designated

n = n(�k)|�k=ω = [exp h̄βT ω − 1]−1.

Note that according to the Boltzmann distribution
n

n + 1
= e−h̄βT ω.

For the second-order result ρ(2), we obtain only a partial result,

ρ
(2)
aα,aβ = 0 α 	= β

ρ
(2)

0α,1β = J [
√

β〈α′|β − 1〉 +
√

β + 1〈α′|β + 1〉]C0e−h̄αβT ω − C1e−h̄ββT ω

ω(α − β) − ε
.

(14)
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The decision about the asymptotic is disabled, because there are two arbitrary constants
C0, C1. Let us repeatedly note that whenever O is specified the result can be given uniquely.
For example, λ4O = 0 refers to the case we numerically treat in the previous subsection and we
have seen that there was only one solution to (8). The results of (8) and (11) do not contradict,
rather they illustrate the deficiency of the second-order approximation from different angles.
We do not calculate explicitly the fourth order but depending on this result, result (13) can be
obtained uniquely. Furthermore, the eigenvector corresponding to the near-to-zero eigenvalue
from the previous subsection is related to the second independent solution in (13). This relates
the results of these parts to the previous discussion.

The asymptotic distribution among the sites in the second-order theory is not credibly
described on reflection (13); on the other hand, the vibrational level asymptotics is known and
the results respect the canonical prescription. Note that our numerical calculations indicate
further eigenvalues with a rapidly falling real part that lie in the neighbourhood of some
imaginary numbers. The common feature is that the asymptotics of the particle distribution
between sites is not well calculated. The only condition for the zeroth-order diagonal terms is
balance equation given from relaxation among vibrational levels as follows from the detailed
study of (11). The J-dependent terms in fact only cause appearance of covalent bonds in
the second order. This situation is widely typical for similar Hamiltonians which combine
coherent transfer among sites with relaxation on the sites [3, 16]. Note towards another type
of scaling: if we scale J proportional to λ then our results will be more comprehensive but in
the main conclusion not different. Nor here can we find asymptotics—see appendix B.

3.3. Relation to the Davies limit

Davies in his works built up the rigorous mathematical base for nonconvolution master
equations. He proved some rigorous theorems for correctness of the solution one obtains
using the second-order approximation of TCL-GME. We do not want, however, to take into
question his rigorous arguments, but we warn about their not very high power (applicability) in
some particular cases. Let us repeat the main statement for correctness of the master equations
which Davies proved [1, 4, 5]:

lim
λ→0

max
τ∈〈0,τ0〉

∣∣ρ(λ−2τ ) − ρ(GME)(λ−2τ )
∣∣ = 0. (15)

(We omit assumptions of that theorem, because they have no relation to our problem, and they
are of mathematical importance only.) This result is sometimes referred to as the proof of
GME correctness. However, we must ask which quantities are really well guaranteed by (15).
The topology (on the space of one parameter, i.e. λ-dependent time-evolution of the density
matrix) induced by the Davies limit is quite weak. One can prove that the fourth-order fall-off
exp(−λ4t) (i.e. eigenvalue proportional to λ4) is not distinguished from 1. Compare, e.g. (15)
with a trivial statement

F(τ ) = e−λ4τ

lim
λ→0

max
τ∈〈0,τ0〉

|F(λ−2τ ) − 1| = lim
λ→0

max
τ∈〈0,τ0〉

∣∣∣e−λ2τ − 1
∣∣∣ = lim

λ→0

∣∣∣e−λ2τ0 − 1
∣∣∣ = 0.

In any case, we cannot decide about the right asymptotic value on the base of Davies limit
theorems, if there is a slow fall-off to the GME asymptotic solution simply because (15) does
not allow us to say anything about real infinite time limit (note that τ 0 in (15) is finite). We
can show at this point the connection with the nonunique result (13) which we found in the
previous subsection. We have shown that two linear independent solutions fulfil the equation∑

β,δ

{−iLc
αγ,δβ − Rαγ,δβ

}
ρδ,β = 0
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up to second order in λ. Anyway arbitrary choice of C1, C0 in (11) yields∑
β,δ

{−iLc
αγ,δβ − Rαγ,δβ

}
ρδ,β = O(λ2).

So, we are able to introduce such a fourth-order ‘perturbation’ λ4δL of coefficients ωαγ,δλ in
(3) that arbitrary choice of C0, C1 in (13) will provide the asymptotic value (13) for the related
kinetic equation. Moreover, the new perturbed dynamics

ρ(4)(t) = exp [(−iLc − R − λ4δL)t]ρ(0)

satisfies the same condition as (15)

lim
λ→0

max
τ∈〈0,τ0〉

∣∣ρ(λ−2τ ) − ρ(4)(λ−2τ )
∣∣ = 0 ⇔ lim

λ→0
max

τ∈〈0,τ0〉
|ρ(λ−2τ ) − ρGME(λ−2τ )| = 0.

So, the consequences of Davies theorems are not different from the conclusions of the above
section concerning the accuracy of the second-order TCL-GME solution. A question remains:
what is the right ρ(t = ∞)? Actually we must admit that this question remains open (see
page 156 of [1]). We are even not completely sure whether the density matrix of the system
(in the particular physical regime) really has any asymptotics at all. The resolution of the
deficiency can look straightforwardly: carry out the higher order calculation. We warn of
possible difficulties.

1. The calculation of higher-order terms in (3) is technically very complicated. In fact,
nobody (as far as we know) has carried it out up to now.

2. As seen from above, the resolution can require calculation up to higher-order terms than
one can imagine. In fact, our opinion is that the sixth order could probably be the essential
one. This statement we are going to document in our future work.

3. Some conceptual problems may occur. For instance, many years were spent in establishing
the standard form of the second-order approximation.

3.4. Physical consequences and conjectures on the mechanism

A few words concerning the physical interpretation and implications are relevant, because
it seems to be quite unusual that processes which could be usually considered as slow can
have a particularly important role in forming such a basic quantity such as the asymptotical
density matrix. One should be suspicious with respect to vague terms ‘slow, weak, physically
unimportant’, etc. The transfer of dynamical strength arguments is not the best argument to
infer the asymptotical form of the density matrix.

Physically, one possible way of viewing the above result is to discuss the role of the above
additional eigenvalues of (8) upon increasing time in formulae determining asymptotic form of
ρ. Inspection of, e.g. (15) shows that arbitrarily small (in small parameters of the problem) but
nonzero eigenvalues that do not enter the Davies analysis could in principle become relevant
in the long-time domain. Thus, greater-than-usual care in methods of determination of the
asymptotic form of the density matrix should in general be required.

With respect to our particular model: it seems that the direct second-order
TCL-GME treatment of the coherent transfer is not adequately justified in the long-time
regime, though this channel is important at short times. We see a possible connection with its
off-energy-shell nature. The complicated interplay between the coherent transfer and the
bath-induced decoherence treated parallel here describes a process complying with the energy
conservation law. We consider the instability found as a residue of the reflection of these
processes as competing ones, i.e. treated in the leading order of a particular process, rather
than an integrally collaborating process pointing out investigations in adequately higher order.
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This whole compound process is responsible for forming the asymptotical state, and an
approximative decomposition is consequently paid for in the proved mathematical deficiency
of the result obtained. The difference in index (site versus vibrational) characterizing the
particular transfer channel is responsible for the apparent manner—instability, not only
corrections—in which the problem appeared.

We are of the opinion that only the calculations that provide a basic analysis of these
composed processes could give mathematically sounder predictions of the asymptotical state.
This is, however, rather a speculation. A detailed physical comprehension of the subject
involves simplifications of the model that is in the course of development.

4. Conclusions

The correctness of an asymptotic time behaviour treatment was examined. General
consequences of problems encountered on the way were illustrated on one particular case
of a two-site problem considering a Hamiltonian which combines the vibrational relaxation
on one site with the coherent transfer between the sites. Attention was focused on the
perturbational treatment using the TCL-GME technique, where the asymptotically stationary
solution which is independent of the initial density matrix of the system is usually found.
However, in the physical regime of comparable fast bath-induced and coherent transfer,
formally connected with the particular perturbation scheme of the treatment we pointed out
the deficiency of ordinarily used second-order approximation. We observed a very slow
decay of one solution of the TCE-GME different from the stationary one, connected with an
eigenvalue in the spectrum of the projected Liouville superoperator, which approaches to zero
with the perturbational parameter as λ6. As a consequence, the asymptotic state cannot be
determined keeping in mind the possible influence of the higher-order (in the perturbational
series) contributions to (3). More precisely, there is, in general, a whole linear space (with
dimension greater than one) of spurious density matrices, which can appear as a leading term
in the perturbational series of the true asymptotic (stationary) density matrix. This fact can
also be reflected in the Davies limit theorems. We found that the topology provided by Davies
limit is too weak to separate the stationary solution from slowly decreasing solutions. So the
Davies theorems hold good but in this case do not guarantee correctness of any evaluation of
ρ(t = ∞).
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Appendix A. Numerical implementation

Some readers would probably like to judge the credibility of the numerical results, so we add
some details concerning the connected numerical implementation. There are two points we
are going to comment on more widely.
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A.1. Reducing the Hilbert space of system to finite dimension

The Hilbert space of the system has to be reduced to the finite-dimensional one HR
S

for the numerical implementation. Our HR
S consists of the linear extension of vectors

|1〉|µ〉, |0〉|µ′〉, µ,µ′ ∈ 0, . . . , q . Any reduction involves some attention in order to hold
the physically important properties of the projected Liouvillean, namely (9). The connected
difficulties were referred to in [16] where the base |i〉|µ〉, i ∈ set of sites, µ ∈ 0, . . . , q were
chosen and the relaxation tensor over the polaron-shifted states had to be ad hoc ‘corrected’.
The reduction of the relaxation tensor on the finite number of levels is straightforward in our
base. All terms of the relaxation tensor have a physical interpretation—they are connected with
some transition from a level to a level—we remove those ones connected with the transition
to (from) the ‘more than q-excited’ levels. The implementation of Lc term is described below.

There is a wider physical background of our choice of HR
S . The internal problem of

choosing HR
S according to [16] stems from the fact that the polaron-shifted level does not

belong to HR
S . The pure projection of shifted states on HR1

S ≡ ⊕µ|µ〉 then conserves neither
the norm nor the angles between the polaron-shifted levels. Consequently, the projection of
the relaxation tensor on the restricted base according to standard rules does not hold (9). We
suggest identifying the polaron state |µ′〉 with some vector |µ′〉R in the restricted space HR1

S in
a way which conserves the norm and the angles between the polaron states and moreover that
is near to the simple projection at least for the low polaron levels. Such a method is Gramm–
Schmidt orthonormalization process (see [25]) with the projection of vectors connected with
shifted levels

Cµ|µ′〉R =
q∑

ν=0

|ν〉〈ν|µ′〉 −
µ−1∑
η=0

q∑
ν=0

|η′〉R〈η′|R|ν〉〈ν|µ′〉

with a normalization constant Cµ chosen in order to fulfil 〈µ′|R|µ′〉R = 1. This method
provides a general approach for the related phenomena with additional advantages:

• It leaves the most important low levels as undistorted as possible. |µ′〉R converges to |µ′〉
with increasing q. It suggests a simple orientation for the selection of available q. The
choice is reasonable when an increase of q does not change the result appreciably.

• In the reduced Hilbert space HR1
S the orthonormal relation and the completeness relation

remain valid,

〈ν ′|R|µ′〉R = δµ,ν

q∑
µ=0

|µ′〉R〈µ′|R = 1 on HR1
S .

It also implies keeping (9) for relaxation over the shifted site.
• As far as a relaxation process over one site is considered, the distortion coming from the

projection procedure is unimportant. We easily works in the Hilbert space |1〉|µ〉, and
|0〉|µ′〉, µ,µ′ ∈ 0, . . . , q , respectively.

• The identification of the reduced Hilbert spaces of the ‘normal state’ and the reduced
shifted state enables potentially the reduction of information about site-oscillator
correlations.

The only thing that remained to be specified is the implementation of Lc term. We
suggest here transfering the matrix elements from the base |1〉|µ〉, |0〉|µ′〉 to the reduced
base |1〉|µ〉, |0〉|µ′〉R,µ,µ′ ∈ 0, . . . , q without changes. We emphasize: though the just
described implementation is only approximate with regard to the introduced model (1), the
restriction to the finite number of levels and also the distortion of Lc terms can be introduced
in (1). Consequently, the implemented master equation is exact for an open model which is



The instability in the long-time regime behaviour of a kinetic model 5829

near to the introduced one. This comprehension is advantageous because it suggests that the
deviations against q → ∞ are not errors summing together through the computation (e.g.
numerical derivation in figure 2). Of course we must use constant HR

S .

A.2. Implementation of spectral analysis and error estimation

All the spectral analysis was implemented in Fortran 90 with complex double precision. We
controlled the exact validity of (9) as far as the double precision representation in 2 × 64 bits
enables. This care is important because it proves the existence of the zero eigenvector
(the stationary state of the density matrix). For resolving the spectrum the standard routine
DEVCCG from Microsoft IMSL library (see also [26]) with some additional control of errors
was used. One simply estimates the error of the zero eigenvalue. We know the exact eigenvalue,
further we know also the left eigenvector from (9). All the referred results (concerning zero
eigenvalue) had the accuracy of the order of 10−13. The estimation of the eigenvalues was
stopped when the nearest eigenvalue approached the zero eigenvalue at the distance of the
order of 10−8. The ratio between the greatest observed error of the zero eigenvalue and the
second smallest eigenvalue that we referred to is therefore of the order of 10−5. Further,
we observed the second smallest eigenvalue to have the imaginary part equal to zero with
the accuracy of 13 digits, which is the order of numerical errors. However, we have no
fundamental proof of such a statement, but at least the imaginary part of the second smallest
eigenvalue is negligible. Also the sign of the real part of the remaining eigenvalues and
further physically important quantities were checked. One can consider 10−13 as a reasonable
estimation of the numerical error (in eigenvalue). The second region of our check consists in
keeping a reasonable dimension of the restricted Hilbert space. We investigated how referred
results change with the number of considered levels. The table informs about our result for
λ = 0.05

q 4 6 8 10 12 15 20

Re η0 × 10+16 −6.301 54 −0.666 20 0.063 80 −1.491 58 3.607 22 12.267 76 −0.197 85
Re η1 × 10+9 −2.835 37 −1.711 37 −1.256 71 −1.130 70 −1.102 06 −1.095 55 −1.095 01
ln [−Re η1] −19.681 10 −20.185 97 −20.494 77 −20.600 43 −20.626 08 −20.632 01 −20.632 50

and for λ = 1.0,

q 4 6 8 10 12 15 20

Re η0 × 10+14 −15.672 15 3.392 38 0.904 57 9.732 75 −1.196 53 −2.072 02 19.627 54
Re η1 × 10+2 −3.135 85 −3.2182 −3.230 45 −3.232 08 −3.232 25 −3.232 26 −3.2326
ln [−Re η1] −3.462 27 −3.436 34 −3.432 55 −3.432 04 −3.431 99 −3.431 99 −3.431 99

The restriction to the vacuum and the first ten excited levels revealed to be sufficient for
our calculation and such a number is also computationally available. However, the appropriate
number q depends on parameters of the model, mainly on the chosen polaron shift γ (connected
with the distortion of levels) and also on the temperature (connected with the occupation of
higher states). We conclude that errors of the referred results, coming from the numerical
implementation, can hardly be the source of doubts. At the end, we note that the observed
exponent k = 6 in (10) is not sensitive to the change of the parameters and that this value was
observed for a wide range of parameters.
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Appendix B. Another type of scaling

Another type of scaling could also be the subject of the above arguments. Our choice of what
should be the perturbational parameter in the Hamiltonian should be in accordance with the
typical physical situation and the regime we have in mind. We refer the result for the same
Hamiltonian (in λ = 1), but with another proportionality to the perturbational parameter λ of
what is to be considered as a perturbation in the total Hamiltonian H. Specifically

HS = λh̄J (c
†
0c1 + c

†
1c0)(b + b†) + h̄εc

†
1c1 + h̄ω(b† + γ c

†
0c0)(b + γ c

†
0c0).

Such a scaling coincides with the Davies one from [4], if we interpret [J, . . .] as a λ

proportional generator of the Davies semigroup. The behaviour of the system can in principle
entirely differ, in connection with another regime to which our new choice corresponds.
However, we arrive at the conclusion that the result obtained above does not change in any
dramatic way if our interest is focused on general features of the asymptotics. The only change
in Tokuyama–Mori coefficients (3) in the second order is that term in Lc proportional to J is
now proportional to λ instead of λ2. Some changes, however, arise in the power series of the
asymptotic density matrix treated according to subsection 3.B. We refer results here, further
consequences are parallel to the previous scaling:

ρ(t = ∞) =
∞∑
i=0

λiρ(i)

i 	= j ρ
(0)
i,j = 0

ρ(0)
aα,aα = Ca exp [−h̄αωβT ]

ρ
(1)
aα,aβ = 0 α 	= β

ρ
(1)

0α,1β = J [
√

β〈α′|β − 1〉 +
√

β + 1〈α′|β + 1〉]C0e−h̄αβT ω − C1e−h̄ββT ω

ω(α − β) − ε
.

For µ 	= ν we obtain these second order results:

ρ
(2)

1µ,1ν = J 2

ω(µ − ν)

∞∑
α=0

〈µ|b + b†|α′〉〈α′|b + b†|ν〉

×
[
C0e−h̄αβT ω − C1e−h̄µβT ω

ω(α − µ) − ε
− C0eh̄αβT ω − C1e−h̄νβT ω

ω(α − ν) − ε

]

ρ
(2)
0µ,0ν = J 2

ω(µ − ν)

∞∑
α=0

〈µ′|b + b†|α〉〈α|b + b†|ν ′〉

×
[
C0eh̄µβT ω − C1e−h̄αβT ω

ω(µ − α) − ε
− C0e−h̄νβT ω − C1e−h̄αβT ω

ω(ν − α) − ε

]

and the following condition for ρ
(2)
0µ,1ν

ρ
(2)

0µ,1ν =
J 〈µ′|b + b†|ν〉

[
ρ

(1)

0µ,0µ − ρ
(1)

1ν,1ν

]
ω(µ − ν) − ε

.

We mention here that ρ(1)
aν,aν are to be understood as arbitrary parameters. The coefficients that

we have not mentioned cannot be specified better in our machinery.
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