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The coherent third order optical response of molecular aggregates with fluctuating frequencies,
couplings, and transition dipole moments is studied. We derived stochastic nonlinear exciton
equations �SNEEs� by combining the quasiparticle picture of excitons with the path integral over
stochastic bath paths described by the stochastic Liouville equations. Coherent two-dimensional
�2D� spectra are calculated for a tetramer model system whose transition dipole orientations undergo
two-state stochastic jumps on an arbitrary timescale. Correspondence between domains of ordered
dipoles, which determine the exciton coherence length and the absorption peaks, is established.
Signatures of domain coherence length fluctuations are observed in the cross peak dynamics of the
2D spectra in specific pulse polarization configurations. © 2010 American Institute of Physics.
�doi:10.1063/1.3442415�

I. INTRODUCTION

The modeling of the coherent nonlinear optical response
of excitonic aggregates in fluctuating environments is a chal-
lenging task that has been addressed at various levels of
theory.1–6 A realistic description must include fluctuating
transition frequencies, transition dipole moments, and
dephasing rates, as well as exciton transport on arbitrary ti-
mescales. Developing numerically efficient approximation
schemes is essential for applications to complex biological
and chemical systems.

Current simulation approaches for electronic excitations
of aggregates can be broadly sorted into two classes, which
treat aggregates either as supermolecules or quasiparticles.2

The supermolecule approach dissects the response to contri-
butions from various Liouville space pathways �LSP� of the
global �many-chromophore� states. The time evolution
within each excitonic manifold �single exciton, two-exciton,
etc.� is calculated separately by solving the Liouville equa-
tion. Diagonal Gaussian fluctuations can be conveniently in-
corporated by the cumulant expansion. The Redfield
equations7 describe exciton transport induced by fast �white
noise� off-diagonal fluctuations. Collective bath coordinates
can be used to describe broader classes of fluctuations.8

However, any combination of cumulants and master equa-
tions treats on- and off-diagonal Hamiltonian fluctuations
differently and refers to a fixed basis and thus does not de-
scribe slowly fluctuating eigenstates.

The stochastic Liouville equations �SLE�9,10 and its finite
temperature extensions11–14 interpolate between regimes,
where either Redfield equations hold �when each bath con-
figuration is visited during one period of quantum coherence�
or where static averaging is applicable. They may be thus

used to describe slow off-diagonal fluctuations. SLE can de-
scribe any type of Markovian fluctuations �not only Gaussian
profiles�.

Stochastic dynamics is commonly used to describe spec-
tral diffusion and hydrogen bonding of liquids.15–20 The vi-
brational frequency varies when hydrogen bonds form or
break. Hydrogen bonding is thus monitored by fluctuations
of vibrational frequency, and its timescale can be
conveniently deduced from the two-dimensional �2D�
spectrum.19–22 The monitored process itself is not manipu-
lated by laser pulse, i.e., it is bath process that can be de-
scribed by the SLE. This is, however, the simplest case,
where only the transition frequency is modulated and the 2D
spectrum directly probes profile and timescales of the bath
path.23

More complex effects emerge when the exciton delocal-
ization is modified by the bath. For instance, 2D spectra
measure how the selection rules for excitation of two
coupled �symmetric� levels are relaxed by slow spectral dif-
fusion and otherwise dark level acquires transient dipole
moment.24 2D spectra have also been instrumental in the
study of conformation dynamics in peptides25 through exci-
ton fluctuations between coupled amide vibrations.

Destructive interference between various LSPs common
in larger aggregates complicates the supermolecule approach
due to large cancellations of similar contributions. The qua-
siparticle nonlinear exciton equations �NEE� approach26,27

solves this problem. It simulates the observables directly and
avoids the calculation of global eigenstates and the various
LSP. Most current implementations of the NEE only include
fast bath fluctuations by adding relaxation kernels disregard-
ing the effect of the finite fluctuation timescale.

In this paper we generalize the NEE to include arbitrary
timescale fluctuations. We include Markovian stochastic bath
processes, over which the path integration is carried out ex-
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actly by the stochastic NEEs �SNEEs�. In principle, the
SNEE is equivalent to the SLE �Langevin versus master
equation description of the same physical process�. However,
the two differ in computational cost and numerical accuracy
and suggest different approximation schemes. The SNEE
shares the numerical advantages of quasiparticle approach, as
it eliminates the large cancellations between various LSPs of
the supermolecule approach. We then apply the SNEE to
model the dynamics of exciton delocalization induced by
changing chromophore orientations within the molecular ag-
gregate. Intermolecular coupling between molecules with
parallel transition dipoles delocalizes the eigenstates. Perpen-
dicular dipoles, in contrast, do not couple and localize the
states. Local fields which shift site frequencies during orien-
tation flips also localize the state. Regions of ordered and
disordered dipoles may be identified in the spectra. We will
demonstrate that 2D photon echo spectra monitor the trans-
formation of structural motifs by orientation jumps. We will
also show how the SNEE connects the molecule orientation
dynamics with the dynamics of optical coherence and prop-
erly account for variations of the time-dependent coherence
length.

We focus on discrete fluctuations �jumps� as recently
observed in liquids28–31 or photosynthetic aggregates.32,33 In
the two-state model of orientation jumps, which affect tran-
sition dipole moment and modify molecular frequencies and
intermolecular �dipole-dipole� couplings, the coherence
length can be easily defined by the ordered region, and sig-
natures of its variations are predicted in the 2D photon echo
spectrum.

II. THE SNEE FOR INTERACTING BOSONS

We first derive the SNEE in general form using the qua-
siparticle representation for the stochastic quantum dynam-
ics. To that end we consider a system of boson modes with
pairwise interactions described by the stochastic Hamiltonian

Ĥ = ��
mn

hmn;�q�b̂m
† b̂n +

�

2 �
mnm�n�

Vmn,m�n�;�q�b̂m
† b̂n

†b̂m�b̂n�,

�1�

where b̂m
† and b̂m are creation and annihilation bosonic op-

erators and hmn and Vmn,m�n� are matrix elements of one-
particle Hamiltonian and two particle interaction, respec-
tively. Both hmn and Vmn,m�n� coefficients depend on a set of
stochastic bath coordinates �q� whose time evolution �q��t�
causes fluctuations of Hamiltonian �Eq. �1��. Interaction with
the sequence of probing laser pulses assumes dipole form.
Next we assume that distance between bosons is much
shorter than wavelength and all coupled bosons can be con-
sidered at the same macroscopic location r�. Interaction
Hamiltonian in the rotating wave approximation is given by

Ĥ��t� = ��
m

��m;�q�
− �t�b̂m

† + �m;�q�
+ �t�b̂m� ,

�m;�q�
− �t� � −

1

�
�

j

�� m;�q� · E� j f�t − � j�eik� j·r�−i�jt, �2�

�m;�q�
+ �t� = ��m;�q�

− �t���.

Here �� m;�q�= ��m;�q�
x ,�m;�q�

y ,�m;�q�
z � is the transition dipole

moment of mth boson �matrix element between the ground
and excited state�, E� j = �Ej

x ,Ej
y ,Ej

z� is the polarization vector
of the jth laser pulse with wavevector k� j and envelope f�t�
reaching the system at times � j, and the asterisk � stands for
complex conjugate.

The process �q��t� modulates the Hamiltonian param-
eters �Eq. �1��. We assume that �q��t� is a Markovian stochas-
tic process34 whose density P��q�� satisfies a master equation

dP��q��
dt

= �
�q��

T�q��q��P��q��� . �3�

The off-diagonal elements of the matrix T�q��q�� are rates for
jumps from bath configuration �q�� to �q�. The elements on
diagonal satisfy T�q���q��=−��q���q��T�q��q��, which ensures the
conservation of total density ��q�P��q��=1.

Fluctuations in the Hamiltonian can be incorporated into
the quantum dynamics by direct generation of stochastic
paths �q��t� �see, e.g., Ref. 16 for application to vibrational
lineshapes of water�. An alternative approach, which has
been applied for nonlinear spectroscopy of molecules and
small aggregates,24,25,35 allows for analytical integration over
bath paths by using SLEs �Eq. �A1��. The SNEE is obtained
by combining it with the calculation strategy used to derive
quasiparticle NEEs.2,26

We introduce the �bosonic� density matrix �̂�q��t�
���̂�t� 	 �q��t�= �q�� in a given bath state �q�, normalized to
Tr �̂�q�= P��q�� �i.e., the normal bosonic density matrix �̂

=��q��̂�q��. Convenient simulation strategy will be based on
averages 
 . . . ��q��Tr. . . �̂�q�. Equations of motion for the

quantities 
b̂m��q��Tr�b̂m�̂�q��, 
b̂mb̂n��q��Tr�b̂mb̂n�̂�q��,

b̂m

† b̂n��q��Tr�b̂m
† b̂n�̂�q��, and 
b̂k

†b̂mb̂n��q��Tr�b̂k
†b̂mb̂n�̂�q�� are

derived in Appendix A. Two methods are presented based on
either SLEs or direct path integration of the NEEs. The re-
sulting SNEE truncated to represent the third order response
reads

i
d

dt

b̂m��q� = �

m�

hmm�;�q�
b̂m���q� + �
m�kl

Vmm�,kl;�q�
b̂m�
† b̂kb̂l��q�

+ i�
�q��

T�q��q��
b̂m��q�� + �m;�q�
− P��q�� , �4�

i
d

dt

b̂mb̂n��q� = �

m�n�

hmn,m�n�;�q�
�Y� 
b̂m�b̂n���q�

+ i�
�q��

T�q��q��
b̂mb̂n��q�� + �m;�q�
− 
b̂n��q�

+ �n;�q�
− 
b̂m��q�, �5�
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i
d

dt

b̂m

† b̂n��q� = �
k

�hnk;�q�
b̂m
† b̂k��q� − hkm;�q�
b̂k

†b̂n��q��

+ i�
�q��

T�q��q��
b̂m
† b̂n��q�� − �m;�q�

+ 
b̂n��q�

+ �n;�q�
− 
b̂m

† ��q�, �6�

i
d

dt

b̂k

†b̂mb̂n��q� = �
m�n�

hmn,m�n�;�q�
�Y� 
b̂k

†b̂m�b̂n���q� − �
k�

hk�k;�q�

�
b̂k�
† b̂mb̂n��q� + i�

�q��

T�q��q��
b̂k
†b̂mb̂n��q��

+ �m;�q�
− 
b̂k

†b̂n��q� + �n;�q�
− 
b̂k

†b̂m��q�

− �k;�q�
+ 
b̂mb̂n��q�, �7�

where

hmn,m�n�;�q�
�Y� � hmm�;�q��nn� + hnn�;�q��mm� + Vmn,m�n�;�q� �8�

is the Hamiltonian for the two exciton manifold. Averages


b̂m��q�, 
b̂mb̂n��q�, 
b̂m
† b̂n��q�, and 
b̂k

†b̂mb̂n��q�, and Eqs. �4�–�7�
depend parametrically on position r�, but only through simple
phase factor of Eq. �2�.

We define the Green’s function Gm�q�,m��q�� for the entire

set of all boson m and bath �q� states 
b̂m��q� by the homog-
enous part of Eq. �4�,

i
d

dt
Gm�q�,m��q�� = �

m�

hmm�;�q�Gm��q�,m��q��

+ i�
�q��

T�q��q��Gm�q��,m��q�� + i�mm���q��q����t� .

�9�

The Green’s functions for 
b̂mb̂n��q� �Eq. �5��, 
b̂m
† b̂n��q� �Eq.

�6��, and 
b̂k
†b̂mb̂n��q� �Eq. �7�� can be similarly derived for

homogenous part of the respective SNEE and will be de-
noted as Gmn�q�,m�n��q��, G

mn�q�,m�n��q��
�N�

, and G
kmn�q�,k�m�n��q��
�Z�

, re-

spectively. Note that all the Greens functions are independent
on r�. The microscopic polarization generated by a single
bosonic system is calculated by expanding the polarization

vector P� �q���m�� m;�q�
� 
b̂m��q�+c.c. perturbatively in electric

field and averaged over bath paths 
 . . . �=Tr. . . �̂
=��q�
 . . . ��q�.

The 2D experiments are carried on macroscopic samples
much larger than wavelength and made of uniformly distrib-
uted identical systems of Eq. �1�. The outgoing signal is pro-
portional to the Fourier components of the polarization
Sk�

a�t�= �2��−3�d3re−ik� ·r���q�P�q�
a �t ,r��. Phase factors of Eq. �2�

limit the signal to one of the phase matching directions
k�out=� j 	k� j.

The linear signal generated by short �f�t�=��t�� pulse E1
b

is described by linear response functions Iab�t�,

Sk�
a�t� = ��k� − k�1��

b

Iab�t�Eb + ��k� + k�1��
b

Iab��t�Eb.

�10�

Imaginary part of its Fourier transform Iab�
�
=�0

�Iab�t�ei
tdt corresponds to the absorption spectrum. By
solving Eq. �4� we get

Iab�
� =
i

�
�

m1,m2

�
�q��,�q�

�m2;�q�
a�

�m1;�q��
b Gm2�q�,m1�q���
�

�P��q��� . �11�

The polarization Pa�t1+ t2+ t3� generated by three short
pulses E1

d, E2
c, and E3

b at times 0, t1, and t1+ t2 is described by
the third order response function Rabcd�t3 , t2 , t1�. The photon
echo signal generated in the k� I=−k�1+k�2+k�3 direction is cal-
culated in Appendix B by solving Eqs. �4�–�7� to third order
in the electric field by direct extension of the results in Ref.
2. The response function in the frequency domain �Eq. �B3��
reads

RkI

abcd�
3,
2,
1�

= 2i �
m1−4m1−4� m1−2� m1�

�
q�−�

 i

�
�3

�m4;�q��
a�

�m3;�q��
b

��m2;�q�
c

�m1;�q��
d�

Gm4�q��m4��q���
3�

�Vm4�m1�,m3�m2�;�q��Gm1�m3�m2��q��,m1�m3m2��q��
�Z� �
3�

�Gm1�m2��q��,m1�m2�q�
�N� �
2�Gm1��q�,m1�q��

� �− 
1�P��q��� .

�12�

where 
1 ,
2 ,
3 are Fourier conjugated to t1 , t2 , t3 �Eq.
�B3��. The other third order signals are given in Appendix B.

III. EXCITON HAMILTONIAN OF AGGREGATES WITH
FLUCTUATING CHROMOPHORE ORIENTATIONS

We now apply the SNEE to optical properties of molecu-
lar aggregates. A linear chain of N molecules with nearest
neighbor coupling is described by the Frenkel exciton
Hamiltonian36–38

� �� � ���

FIG. 1. Dipole-dipole intermolecular coupling �Eq. �25�, J��2 /dmn
3 � for

various configurations of transition dipole moments.

�
�
�� �

�
�� �

�
��� �

�
���

FIG. 2. Sample configuration uudd of model in Sec. III A.
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HF = ��
m=1

N

�m�t�B̂m
† B̂m

+ ��
m=1

N−1

Jmm+1�t�B̂m
† B̂m+1 + Jm+1m�t�B̂m+1

† B̂m, �13�

where �m are exciton frequencies and �Jmn is intermolecular
coupling. Electronic excitations are not bosons, and the
double excitations of the same molecule are strongly shifted
from the single excitation frequencies. For two level chro-

mophores exciton creation �annihilation� operators B̂m
† , �B̂m�

obey the Pauli commutation rule �B̂m , B̂n
†�=�m,n�1−2B̂n

†B̂m�.
To connect with the boson formalism of the previous

section, we formally allow double excitations to reside on
the same molecule but add a energy penalty �anharmonicity�

Vmn,m�n�;�q� = �m�mm��mn�nn�. �14�

The third order response can be then calculated by using the
SNEE �Eq. �4�–�7��, with one-particle Hamiltonian

hmn;�q� = �m;�q��mn + Jmm+1;�q���mn+1 + �m+1n� , �15�

and two-particle interaction Eq. �14� in �m→� limit, which
exclude the double excitation from the spectrum and account
for the Pauli exclusion.

In other words, creation and annihilation operators in
exciton Hamiltonian have to be changed to the bosonic one

B̂m→ b̂m, B̂m
† → b̂m

† with certain adjustment of two-particle in-
teraction. Bosonization procedure required for higher ��3�
response functions is summarized in Ref. 2. Bosonization
schemes for general types of excitons are also well
developed.39

In practical simulations, we took �m to be finite and
large. The doubly excited state must be represented in prac-
tical implementation of the SNEE �Eqs. �4�–�7��, and the
�m→� limit has to be taken at the end of calculation.

We shall investigate signatures of molecular reorienta-
tion in the linear and third order optical spectra. We assume
that mth molecule randomly jumps between two orientations
associated to two states of local bath coordinate qm=1 �we
will call it u-state� and qm=−1 �d-state�. The complete bath
configuration is a collection �q���q1 ,q2 , . . . ,qN�.

We next assume that molecules jump independently.
This neglects interaction between permanent dipoles in the

electronic ground state 	g� �defined by B̂m	g�=0�. Dynamics
then satisfies local master equations

dPm�qm�
dt

= �
qm� =1,−1

T̃qmqm�
�m� Pm�qm� � . �16�

Markovian master equation �Eq. �3�� for the whole process

�q��t� is then obtained by combining jumps rates T̃m of Eq.
�16�,

T�q��q�� = �
m=1

N

T̃qmqm�
�m� . �17�

We limit simulations to high temperatures with equal rates k
for all molecules and both u→d and d→u bath jumps

T̃qmqm�
�m� = − k k

k − k
� . �18�

The transition dipole moment between the ground and the
excited state of the mth molecule �enters the model in Eq.
�2�� is a vector function �� m;�q���� m�qm�. The Hamiltonian
parameters � and J �of Eq. �13�� also depend on the bath
configuration �q�= �q1 , . . . ,qN�. Transition frequencies �m are
shifted by local field E� ,

�m;�q� = �̄ + E� · �� m�qm� .

The intermolecular coupling has dipole-dipole form

Jmn;�q� =
1

4��
��� m�qm� · �� n�qn�

dmn
3

− 3
��� m�qm� · d�mn���� n�qn� · d�mn�

dmn
5 � , �19�

where dmn are the intermolecular distances and � is permit-
tivity. The exciton coupling falls rapidly Jmn�1 / 	m−n	3
with distance, and it will be approximated by nearest neigh-
bor interaction �Eq. �13��. Figure 1 summarizes coupling be-
tween chromophores of various orientations.

In the next two subsections, we treat the effect of orien-
tation jumps on collective dynamics of excitation coherence.
In each subsection we discuss distinct mechanism, by which
orientation jumps reduce the coherence length. The spectral
diffusion during flips reduces the coherent length when the
energy fluctuations are larger than coupling strength �weak
coupling limit�. This mechanism is treated for molecules that
undergo flips in Sec. III A.

Delocalization is also absent when transition dipoles are
perpendicular and the coupling vanishes �see Fig. 1�. Jumps
between transversal and perpendicular orientation of mol-
ecules will be examined in Sec. III B.

A. Linear tetramer with transition dipole moments
perpendicular to its axis

We assume transition dipole moments with fixed magni-
tude � whose orientations can flip between �� m= �� ,0 ,0� for
u-state �qm=1� and �� m= �−� ,0 ,0� for d-state �qm=−1� both
perpendicular to the aggregate axis d�mn=D0�0,m−n ,0�,
where D0 is the distance between two molecules �see Fig. 2
for sample configuration�. The molecular frequencies are

�m;�q� = �̄ + �Exqm. �20�

We will set �̄=0 and denote ���Ex so that

�m;�q� = �qm �21�

The intermolecular nearest neighbor coupling �Eq. �19�� is
given by

Jmn;�q� = qmqnJ�mn	1, �22�

where we denoted J��2 / �4��D0
3�.

The coupling to the optical field is described by interac-
tion Hamiltonian

014102-4 Šanda, Perlík, and Mukamel J. Chem. Phys. 133, 014102 �2010�



TABLE I. Spectral analysis of the one-particle Hamiltonian �Eq. �15�� of a tetramer �Fig. 2�. For each bath configuration �first column�, eigenfrequencies E
are given as a function of J ,�. Solutions �Ferrari–Cardano quartic formula� for characteristic equation 0=J4−3J2E2+E4+2J2E�+ �J2−2E2��2+�4 of uddd
configuration and characteristic equation 0=J4−3J2E2+E4+2�J2−E2�E�+J2�2+2E�3−�4 of uuud configuration are complicated; we designate them by I–IV.

Peaks in weak-coupling absorption spectra �Fig. 3� are assigned in the third column along with oscillator strength u2��1 /��2	
g	�i�� i
*��q��B̂i	E�	2 in the fourth

column. Peaks of strong coupling absorption spectrum �bottom panels of Fig. 6� are assigned in the fifth column. Numerical values of E and u2 for
intermediate coupling �top panels of Fig. 6� are given oscillator strength in the sixth and last columns, respectively.

�q� Exciton frequency E J�� uJ��
2 J�� EJ=� uJ=�

2

uuuu − 1
2 ��5+1�J+� � 0.00 � �0.62 0.00

1
2 �−�5+1�J+� DW� 0.21 E 0.38 0.21
1
2 ��5−1�J+� � 0 � 1.62 0.00
1
2 ��5+1�J+� D� 3.79 F 2.62 3.79

uudu 1
2 ��−�J2+�2−�5J2+2�2+2��J2+�2� A2 0.96 � �1.77 0.11
1
2 ��−�J2+�2+�5J2+2�2+2��J2+�2� A3� 0.99 � 1.36 0.48
1
2 ��+�J2+�2−�5J2+2�2−2��J2+�2� � 0.00 E 0.19 0.04
1
2 ��+�J2+�2+�5J2+2�2−2��J2+�2� B� 2.04 F 2.23 3.38

uudd −��2+ 1
2J�3J−�5J2+16�2� B 1.98 E �0.46 0.26

��2+ 1
2J�3J−�5J2+16�2� � 0.00 � 0.46 0.86

−��2+ 1
2J�3J+�5J2+16�2� � 0.00 � �2.19 0.00

��2+ 1
2J�3J+�5J2+16�2� B� 2.02 F 2.19 2.87

uduu See uudu

udud −�1
2 �3+�5�J2+�2 A1 1.83 � �1.90 0.28

�1
2 �3+�5�J2+�2 A1� 1.96 F 1.90 3.51

−�− 1
2 �−3+�5�J2+�2 A3 0.11 E �1.18 0.16

�− 1
2 �−3+�5�J2+�2 A3� 0.10 � 1.18 0.05

uddu 1
2 �J−�5J2−4J�+4�2� B 1.96 E �0.62 0.21
1
2 �J+�5J2−4J�+4�2� A3� 2.04 F 1.62 3.79

1
2 �−J−�5J2+4J�+4�2� � 0.00 � �2.30 0.00
1
2 �−J+�5J2+4J�+4�2� � 0.00 � 1.30 0.00

uddd I CW 0.08 � �1.22 0.03

II � 0.00 E 0.22 1.40

III C 2.89 � �2.50 0.03

IV A3� 1.02 F 1.50 2.55

uuud I A3 0.98 � �1.50 0.32

II CW� 0.09 E �0.22 0.26

III � 0.00 � 1.22 0.01

IV C� 2.93 F 2.50 3.41

dddd − 1
2 ��5+1�J−� � 0.00 � �2.62 0.00

1
2 �−�5+1�J−� DW 0.21 E �1.62 0.21
1
2 ��5−1�J−� � 0.00 � �0.38 0.00
1
2 ��5+1�J−� D 3.79 F 0.62 3.79

ddud 1
2 �−�−�J2+�2−�5J2+2�2−2��J2+�2� � 0.00 � �2.23 0.01
1
2 �−�−�J2+�2+�5J2+2�2−2��J2+�2� B 1.96 � �0.19 0.58
1
2 �−�+�J2+�2−�5J2+2�2+2��J2+�2� A3 1.00 E �1.36 0.62
1
2 �−�+�J2+�2+�5J2+2�2+2��J2+�2� A2� 1.04 F 1.78 2.80

dduu See uudd

dudd See ddud

dudu See udud

duud 1
2 �−J−�5J2−4J�+4�2� � 0.00 � �1.62 0.00
1
2 �−J+�5J2−4J�+4�2� � 0.00 � 0.62 0.00
1
2 �J−�5J2+4J�+4�2� A3 1.96 E �1.30 0.89
1
2 �J+�5J2+4J�+4�2� B� 2.04 F 2.30 3.11

dddu See uddd

duuu See uuud
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Ĥ�q�� = − �
m=1

N

�
j=1

3

��qmB̂m
† Ej

xf�t − � j�eik� j·r�−i�jt

+ �qmB̂mEj
xf�t − � j�e−ik� j·r�+i�jt� . �23�

The optical response was calculated using Eqs. �11� and �12�,
after bosonization procedure Eqs. �14� and �15�. We shall
show the linear signal Ixx�
� and the imaginary part of pho-
ton echo signal −Im RkI

xxxx�
3 , t2 ,−
1�. Sign convention en-
sures positive diagonal peaks at chromophore transition fre-
quencies.

We first consider slow bath k�� ,J. For k→0 Green’s
function G�
� has poles at spectrum of one-particle Hamil-
tonian. Peak positions in absorption spectrum �Eq. �11�� are
thus found by spectral analysis of hmn,�q� made in Table I.

The weak coupling J�� absorption spectrum shows two
groups of peaks �Fig. 3�. Molecules in u state absorb around

=� and in d state absorb around 
=−�. Fine structure
�central panels� is caused by exciton delocalization between
coupled molecules. Excitons can only be delocalized among
molecules with similar frequencies. Peaks A–D thus corre-
spond to the excitons delocalized over clusters of one �A� to
four �D� neighboring molecules with the same orientation
�one exciton always carries most oscillator strength in clus-
ter�. Peak position is obtained by diagonalizing Hamiltonian
on the cluster �agree with Table I in J /�→0 limit�. Peak
magnitudes are determined by an oscillator strength u2

�Table I� and by the density of clusters w in the ensemble
�Table II�. Oscillator strength and coherence length are pro-
portional to length of a cluster, which thus characterizes the
structure.

As an example, we discuss the spectrum around

�−� �central left panel of Fig. 3�. Peak A at �
�
+�
=0 is assigned to d site surrounded by u-sites, with oscillator
strength u2=1 and density factor w=3 /4. Peak B at �
=J is
due to dimer �dd� cluster �w=5 /16,u2=2�. The other dimer
eigenstate �
=−J is dark �u2=0�. Diagonalization of the

ddd cluster Hamiltonian explains peak C �w=1 /8,u2= �3
+�2� /2� at �
=�2J and weak peak CW �u2= �3−�2� /2� at
�
=−�2J. The remaining state �
=0 is dark. Finally, an
all-parallel dddd cluster �w=1 /16� yields peak D �u2=2
+4 /�5� at �
= 1

2 ��5+1�J and small peak DW �u2=2
−4 /�5� at �
= 1

2 �−�5+1�J. Other levels of dddd cluster
�
= 1

2 ��5−1�J and �
= 1
2 ��5−1�J are dark. The 
��

peak is structured into features A�, B�, C�, and D� �Fig. 3,
bottom right�, which are shifted from � by the same values
�
 as peaks A, B, C, D from −� and correspond to u, uu,
uuu, and uuuu clusters.

Peaks are further structured, as the eigenfrequencies also
depend on the cluster surrounding. This structure may be
resolved for narrow peaks satisfying the condition k�J2 /�
�peak width k is compared with frequency splitting as found
in Table I between, e.g., two eigenstates around −� of udud
configuration�. Peak A is split at Fig. 3, bottom panel, into
three features A1, A2, and A3 �A� into A1�, A2�, and A3��.
Feature A1 corresponds to case when d is surrounded by two
monomers u �i.e., configuration ud�ud� �underlined chro-
mophore is dominantly occupied�, for A2 is d surrounded by
u monomer and uu dimers �configuration uud�u�. Finally A3

feature covers all d-terminating configurations �udud� , uuud� ,
ddud� , and d�uud� �.

The corresponding 2D spectra of photon echo signal
�Eq. �12�� at zero delay time t2=0 are shown in Fig. 4. We
see eight major diagonal peaks corresponding to A, B, C, D,
A�, B�, C�, and D� in Fig. 3. Additional six off-diagonal
negative-going features are poles of G�Z��
3� versus G�
1�
and correspond to excited state absorption. Peak B at
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FIG. 3. Absorption spectra �Im I�
�� of weakly coupled J /�=0.02 tetramer
�Eqs. �11�, �21�, and �22�� in the slow bath limit k /J=0.02. Top: two groups
of peaks are formed around 
=−� and 
=�. Central: fine peak structure
around 
=−� �left� and around 
=� �right� is shown on an expanded scale.
Peaks A–D �A�–D�� are absorption of clusters of one to four d-states
�u-states�. Bottom: peak A on an expanded scale is further structured for
very slow bath k /J=0.0005�J /�=0.02.

TABLE II. Density of clusters w in aggregate at high temperatures. Com-
binatorial weight of all-parallel clusters in the chain with random u or d
orientation of dipoles.

Polymer\cluster d dd ddd dddd ddddd

Monomer 1/2
Dimer 1/2 1/4
Trimer 5/8 1/4 1/8
Tetramer 3/4 5/16 1/8 1/16
Pentamer 7/8 3/8 5/32 1/16 1/32
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FIG. 4. The 2D photon echo �−Im RkI
�
3 , t2=0 ,−
1�� signal �Eq. �12��

from weakly coupled tetramer �parameters correspond to Fig. 3�. Both di-
agonal �� ,��, �−� ,−�� and off-diagonal �� ,−��, �−� ,�� regions are shown.
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�
1 ,
3�= �−�+J ,−�−J� comes from dd cluster: two exciton

level B̂1
†B̂2

†	g� �frequency −2�� of a symmetric dimer has a
large transition dipole with the symmetric state of dimer

�B̂1
†+ B̂2

†�	g� �frequency −�+J; pole of G�Z��
3� is thus at
−�−J�. Similarly, the ddd cluster induces peak C at ��2J ,0�
and dddd cluster adds peak D at ���5+1�J /2, ��5−1�J /2�.
Isolated chromophore cannot be doubly excited, so there is
no similar peak related to d cluster.

At longer delay times kt2�1 the bath is reconfigured,
and the cluster �coherence� length is changed. Figure 5
shows the evolution of the 2D spectrum of weakly coupled
aggregate with delay time t2. The cross peaks grow, and their
volumes measure the rates of clusters transformation via
bath-induced fluctuations. Dynamics of structural motifs is
thus reflected in 2D correlation spectrum, e.g., ddd→dd
transformation is found at B and C cross peaks.

For intermediate coupling strength J��, the two groups
of peaks overlap and the pattern becomes rather complex
�top panels of Fig. 6�. The oscillator strength accumulates at
larger �
�0� frequencies �see the sixth and seventh column
of Table I�. The 2D signal is dominated by a large structured
diagonal peak between J�
�2J. First �t2=0� it is rather
elongated; loss of memory with t2 gives the 2D lineshape
more rounded shape.

The strong coupling J�� lineshape �bottom left panel of
Fig. 6� has two peaks: at 
= 1

2 ��5+1�J, strong peak F

�u2=2+4 /�5� and at 
= 1
2 �−�5+1�J, much weaker peak E

�u2=2−4 /�5�. Peak assignment is given by the fifth column
of Table I. Interestingly, the eigenfrequencies and associated
oscillator strength �for aggregate of any size� are not affected
by jumps. Contributions from all bath configurations �q� are
equal in �=0 limit since the effect of flipping of qmth bath
state can be eliminated by unitary transformation Bm→−Bm

and Bm
† →−Bm

† . There is no link between structure and spec-
trum in the strong coupling limit; dipole flips cannot be ob-
served. The 2D spectra are dominated by peak F; t2 evolution
does not carry much dynamical information. Peak E
is weak and scales as uE

4 . Additional negative peak at
���5+1�J /2, ��5−1�J /2� can be explained as in Fig. 4.

Stochastic quantum dynamics has been developed to in-
terpolate between various bath timescale limits. We complete
the discussion of model IIIA by studying how the weakly
varying parameters are averaged by the fast bath. In top pan-
els of Fig. 7, the peaks resolved by the energy splitting � /k
�1 between u and d states remain separated, but the fine
structure disappears from the spectrum when the coupling is
averaged out J /k�1 �Fig. 7�. A simple two-state bath dy-
namics is observed with increasing delay time.

When the jump rates become comparable with energy
splitting �� /k�1�, the peaks overlap due to motional nar-
rowing �bottom panels of Fig. 7�. Dip at the central fre-
quency of absorption is always present, narrows down, but
does not vanish even for fluctuations faster than any other
timescale of the model J /k�1,� /k�1. Vanishing average
of the transition dipole moment stays behind this surprising
behavior, which contrasts with Lorentzian peak of motional
narrowing limit of the standard Kubo–Anderson spectral
diffusion40,41 with fixed dipole moments. In 2D signals at
short time delays, peaks merge into the central 
=0 peak,
but the splitting is restored with increasing delay time t2.

B. Dipole moment jumps between transversal and
longitudinal orientations

We next turn to the second mechanism of exciton local-
ization when perpendicular dipole moments do not couple
�see Fig. 1�. We now allow jumps between transverse �state
qm=1; �� m= �� ,0 ,0�� and longitudinal �qm=−1; �� m

= �0,� ,0�� orientation with respect to the aggregate axis
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d�mn=D0�0,m−n ,0�. Figure 8 shows an example configura-
tion. We examine the tensor structure of response as mea-
sured by different pulse polarization configurations.42–44

The site frequencies �Eq. �21�� are

�m = �̄ +
�Em

x + �Em
y

2
+

�Em
x − �Em

y

2
qm.

We set �̄m+��Em
x +Em

y � /2=0 and denote ����Em
x −Em

y � /2 so
that

�m = qm� . �24�

Nearest neighbor intermolecular coupling �Eq. �19� and Fig.
1� can be recast in the form

Jmm+1 =
J

4
�3�qm + qn� − �qmqn + 1�� . �25�

The interaction with the optical field is described by a
Hamiltonian,

Ĥ�q�� = − �
m=1

N

�
j=1

3
�

2
��qm + 1�Ej

x − �qm − 1�Ej
y�B̂m

† f�t − � j�eik� j·r�−i�jt

− �
m=1

N

�
j=1

3
�

2
��qm + 1�Ej

x − �qm − 1�Ej
y�B̂mf�t − � j�e−ik� j·r�+i�jt. �26�

The optical response is calculated by using Eqs. �11� and
�12� after bosonization procedure Eqs. �14� and �15�.

Oriented samples give 32 tensor components of the ab-
sorption spectra and up to 34 tensor components of the third
order response. Two possible orientations �along x and y
axes� of transition dipole in our model still allow 4 and 16
components for the linear and the third order responses, re-
spectively.

For randomly oriented aggregates, there are few inde-
pendent tensor structure components. The only isotropic
component of linear response is I= Ixx+ Iyy. There are three
independent components of the isotropic third order re-
sponse, which give three independent signals,45

R�1��t3,t2,t1� = �
ab=x,y

Raabb�t3,t2,t1�

= Rxxxx + Ryyyy + Rxxyy + Ryyxx,

R�2��t3,t2,t1� = �
ab=x,y

Rabba�t3,t2,t1�

= Rxxxx + Ryyyy + Rxyyx + Ryxxy , �27�

R�3��t3,t2,t1� = �
ab=x,y

Rabab�t3,t2,t1�

= Rxxxx + Ryyyy + Rxyxy + Ryxyx,

where Rijkl are the response functions evaluated in the mo-
lecular frame. The averaged signal Rabcd in the real space can
be calculated using the transformation45

Rabcd =
1

30
��ab�cd, �ad�bc, �ac�bd �� 4 − 1 − 1

− 1 4 − 1

− 1 − 1 4
�

��R�1�

R�2�

R�3� � .

In the slow bath limit we found that Rxyyx, Ryxxy, Rxyxy, and
Ryxyx are much weaker than Rxxxx, Rxxyy, Ryyxx, and Ryyyy. The
two signals R�2��t3 , t2 , t1��R�3��t3 , t2 , t1� are very similar
and dominated by the Rxxxx and Ryyyy contributions. The sys-
tem dynamics can be better extracted from combined signal
R�3�−R�2�=Rxyxy +Ryxyx−Rxyyx−Ryxxy.

We start with the absorption spectra. Three independent
tensor components of the linear responses Ixx, Iyy, and Ixy

= Iyx �cross components are the same due to Onsager reci-
procity relation46� can be measured at oriented samples such
as crystals. Figure 9 shows the Ixx, Iyy, and Ixy components of
absorption for a slowly fluctuating tetramer. Peaks A�, B�,
C�, and D� �Ixx component� have same positions and magni-
tudes as in Fig. 3 and similarly represent d, dd, ddd, and
dddd clusters. Peak positions �
�
+�=0 �peak A�, −2J
�B�, −2�2J �C�, and −�1+�5�J �D� of Iyy scales differently
from Fig. 3 because the intermolecular coupling has factor of
��2� in u . . .u clusters �see Fig. 1�.

In contrast to the model in Sec. III A, the peak structure
remains similar to Fig. 9 even for J�� because the intermo-
lecular coupling between perpendicular transition dipoles
completely vanishes �see Fig. 1�, and the model has no
strong coupling limit. For the same reason, peaks are not

�
�
�� �

�
��� �

�
�� �

�
��

FIG. 8. Sample configuration of transition dipoles uduu of model in Sec.
III B.
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further structured by cluster surrounding �contrast to bottom
panel of Fig. 3�, frequencies obtained by diagonalization of
cluster Hamiltonian are exact.

The cross tensor component Ixy is weak �especially in the
weak coupling limit� unless the bath jump rates become
comparable with J ,�.

Next we turn to the 2D spectra. Figure 10 displays
−Im RkI

�1��
3 , t2=0 ,−
1� in the slow bath limit. Since x�y�
polarized pulses excited primarily u-states �d- states� reso-
nant around 
���
�−��, contributions Rxxyy, Rxxxx, Ryyyy

and Ryyxx shows up in different regions �
1 ,
3���−� ,��,
��� ,��, ��−� ,−��, ��� ,−�� of 2D spectrum, respectively.
Other contributions, e.g., Rxxxx in regions �−� ,��, �−� ,−��,
and �� ,−��, are very weak. The diagonal peaks of Ryyyy and
Rxxxx can be assigned to A–D and A�–D� patterns of the
absorption. Negative peaks correspond to excited state ab-
sorption. Their positions agree with Fig. 4 in the Rxxxx signal
and reflect the reversed positions of A–D peaks �see Fig. 9�
in Ryyyy signal.

The Rxxyy and Ryyxx signals �antidiagonal regions in Fig.
10� are much weaker at short delay times because the signal
�see Eq. �12�� is linear in the diagonal two exciton coupling
V �in the exciton index; see Eq. �14��. For static bath each
exciton is connected with fixed orientation of transition di-
pole moment, and the Rxxyy�Ryyxx� contribution only shows
up with u↔d jumps during t2 interval. This insight is typical
for the NEE description. In the SLE approach, elimination of
most contributions of two static, noncoupled clusters is due
to destructive interference between various LSPs, and the
spectra are thus harder to interpret.2

As the delay time is varied �Fig. 11�, the RkI

�1� signal
acquires various cross peaks, which reflect the dynamics of
cluster transformation. Peak pattern is similar to Fig. 5 �ex-
cept the reversal positions of A–D peaks� since the bath
model �Eq. �16�� was not changed.

The other −Im�RkI

�3��
3 , t2=0 ,−
1�−RkI

�2��
3 , t2=0 ,
−
1�� signal plotted in Fig. 12 is also weak since it requires
jumps during t1 and/or t3 intervals and disappears in static
k=0 limit. The mixed tensor components Rxyxy, Ryxyx Rxyyx,
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1�� signal �27� for tetramer
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ferent regions of 2D spectra as marked.
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and Ryxxy show up in various regions of the 2D spectra. Since
different parts of the aggregate are excited by the first and by
the second pulse, the system is evolving in the coherence
during the second interval and the peaks shows �Fig. 13�
short time oscillations of the period � /�. At longer t2�1 /k
delay times rich cross peak structure is build �Fig. 14� as
bath jumps transform the clusters.

IV. DISCUSSION

Starting with a stochastic Hamiltonian model of fluctua-
tions recast in the quasiparticle representation, we derived a
set of SNEEs and used them to simulate the nonlinear re-
sponse of a model tetramer whose chromophores undergo
two types of orientation fluctuations. Flipping between two
transverse orientations disentangles molecules when associ-
ated frequency shift is larger than coupling �weak coupling
limit�. Swinging between transverse and longitudinal orien-
tations reduces the delocalization length because perpendicu-
lar transition dipoles do not couple. Clusters of parallel mol-
ecules act cooperatively in Dicke-type quantum process and

dominate the spectra of even randomly switching molecules
without any dynamical bias of oriented structures. Signatures
of the length of ordered domain are seen in spectrum. The
variation in 2D spectra with delay time thus provides direct
view into the structural transformation of aggregate. Cross
peaks were uniquely associated with specific transformation
of clusters. Rates of transformation can be estimated by mea-
suring cross peak volumes.

The present formalism can be applied to any type of
Markovian orientation dynamics. For instance, the orienta-
tional ordering of, e.g., water molecules in carbon
nanotubes,28 may be straightforwardly included by finite
temperature generalization of the rate matrix �Eqs. �17� and
�18��, which represents the ground state dipole-dipole inter-
action.

The present simulations used the complete SNEE, which
exactly represent quantum stochastic dynamics �equivalently
to full SLE�. Once approximations are made, the SLE and
SNEE are not equivalent. To save cost NEE implementations
often factorize double �triple� exciton averages into products
of lower ones. This natural approximation for the NEE can-
not be easily made in the SLE. The stochastic fluctuations
build statistical correlations between variables, which are dif-
ferent from that of quantum ones neglected in the NEE.
Straightforward factorization strategy also may not lead to
effective cost reduction since these are often based on
Hilbert space diagonalization, which is not possible for the
SNEE. The development of effective and accurate approxi-
mate schemes for the SNEE approach constitutes a challenge
for the future.
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APPENDIX A: AVERAGING OVER BATH PATHS

Individual trajectories of the bath process �q��t� and the
observable A��q��t�� are not traced in bulk measurements.
Instead, observable ensemble averages are calculated by ap-
plying probability measure D�q��t� on sigma algebra of tra-
jectories �q��t�.

The path integration can be carried out exactly for
Markovian processes in two ways. In the first we start from
the SLEs,10,11

d�̂�q��t�

dt
=

− i

�
�Ĥ��q�� + Ĥ���q�,t�, �̂�q�� + �

�q��

T�q��q���̂�q��.

�A1�

Equations of motions for averages 
Â��q�=TrÂ�̂�q�� for any

operator Â= b̂m , b̂mb̂n , b̂m
† b̂n , . . . can be calculated by applying

SLE �Eq. �A1�� to �d /dt�
A��q�. This results in the SNEE
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FIG. 13. Intensity oscillations at the peak marked at Fig. 12 at short delay
times: top �from left�: �t2=0, 0.4, and 0.8; bottom �from left�: �t2=1.6, 2.2,
and 2.8.
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FIG. 14. Same signal as in Fig. 12 but at long delay time kt2=0.8.
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d
A��q��t�

dt
=

i

�

�Ĥ + Ĥ��t�,A���q� + �

�q��

T�q��q��
A��q��.

�A2�

This approach employs that the path integration was already
made when deriving SLEs.11

In an alternative approach, the solution to NEEs of a
general form

dAi

dt
= �

j

Cij��q��t��Aj�t� + gi��q��t�,t� �A3�

can be averaged over bath paths 
Ai�=�Ai��q��t��D�q��t�, re-
sulting in the path integral


Ai��t� =� D�q��t��exp+��
0

t

�
j

Cij��q��t���dt��
+� dt� exp+��

t�

t

�
j

Cij��q��t���dt��gi��q��t��,t��� .

By carrying out the path integration for a Markovian process,
we obtain


Ai��t� =� d�q��t�d�q��0�P��q��0��

���exp+��
j

Cij��q�� + T��q���t��
�q��t�,�q��0�

+ ��
0

t

dt� exp+��
j

Cij��q�� + T̂��q����t − t���
�gi��q�,t���

�q��t�,�q��0�
� .

An integration over the initial and final states 
Ai��t�
=��q��0�,�q��t�P��q��0��Ai��q� , t� of the solution Ai���q��t� ,
�q��0� , t� to the stochastic nonlinear equations is required,

�Ai���q�,t�
dt

= �
j

Cij��q��Aj���q�,t� + gi��q�,t�

+ �
�q��

T�q��q��Ai���q��,t� . �A4�

APPENDIX B: SURVEY OF THIRD ORDER
SIGNALS

The SNEE �Eqs. �4�–�7�� can be used to calculate third
order response. The macroscopic signal integrated over the
sample is proportional to

Sk�
a =

1

�2��3� d3re−ik� ·r�Pa�t1 + t2 + t3,r��

=
1

�2��3� d3re−ik� ·r��
m

�
�q�

�m;�q�
a 
bm��q��t1 + t2 + t3,r�� .

We have to isolate the third order contribution. After bit of
algebra we limit signal to six possible phase matching direc-
tions proportional to three independent response functions,

Sk�
a�t3,t2,t1� = ��k� + k�1 − k�2 − k�3��

bcd

RkI

abcd�t3,t2,t1�E3
bE2

cE1
d

+ ��k� − k�1 + k�2 − k�3��
bcd

RkII

abcd�t3,t2,t1�E3
bE2

cE1
d

+ ��k� − k�1 − k�2 + k�3��
bcd

RkIII

abcd�t3,t2,t1�E3
bE2

cE1
d

+ ��k� − k�1 + k�2 + k�3��
bcd

RkI

abcd��t3,t2,t1�E3
bE2

cE1
d

+ ��k� + k�1 − k�2 + k�3��
bcd

RkII

abcd��t3,t2,t1�E3
bE2

cE1
d

+ ��k� + k�1 + k�2 − k�3��
bcd

RkIII

abcd��t3,t2,t1�E3
bE2

cE1
d.

�B1�

In Eq. �B1� we have denoted the time intervals t1=�2−�1,
t2=�3−�2, and t3= t−�3. Signal in k� I=−k�1+k�2+k�3 phase
matching direction is

RkI

abcd�t3,t2,t1� = 2i �
m1–4m1–4� m1–2� m1�

�
q�−�

 i

�
�3

��m4;�q��
a�

�m3;�q��
b

�m2;�q�
c

�m1;�q��
d�

��
0

t3

dt�Gm4�q��m4��q���t��Vm4�m1�,m3�m2�;�q��

�Gm1�m3�m2��q��,m1�m3m2��q��
�Z� �t3 − t��

�Gm1�m2��q��,m1�m2�q�
�N� �t2�

�Gm1��q�,m1�q��
� �t1�P��q��� . �B2�

The dt� convolution can be effectively carried out in the
frequency domain

RkI

abcd�
3,
2,
1� = �
0

�

dt1�
0

�

dt2�
0

�

dt3ei�
1t1+
2t2+
3t3�

�RkI

abcd�t3,t2,t1� , �B3�

resulting in Eqs. �12�. This photon echo signal is simulated in
the figures.

Third order signals in others phase matching directions
k� II=k�1−k�2+k�3 and k� III=k�1+k�2−k�3 are obtained as
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RkII

abcd�t3,t2,t1� = 2i �
m1–4m1–4� m1–2� m1�

�
q�−�

 i

�
�3

��m4;�q��
a�

�m3;�q��
b

�m2;�q�
c�

�m1;�q��
d

��
0

t3

dt�Gm4�q��m4��q���t��Vm4�m2�,m3�m1�;�q��

�Gm2�m3�m1��q��,m2�m3m1��q��
�Z� �t3 − t��

�Gm2�m1��q��,m2m1��q�
�N� �t2�

�Gm1��q�m1�q���t1�P��q��� �B4�

and

RkIII

abcd�t3,t2,t1� = 2i �
m1–4m1–4� m1–2� m1�

�
q�−�

 i

�
�3

��m4;�q��
a�

�m3;�q��
b�

�m2;�q�
c

�m1;�q��
d

��
0

t3

dtGm4�q��m4��q���t��Vm4�m3�,m2�m1�;�q��

�Gm3�m2�m1��q��,m3m2�m1��q��
�Z� �t3 − t��

�Gm2�m1��q��,m2m1��q��t2�

�Gm1��q�m1�q���t1�P��q��� , �B5�

respectively. Equations �B4� and �B5� can be transformed to
Fourier domain along the same lines as Eq. �B2�, yielding

RkII

abcd�
3,
2,
1� = 2i �
m1–4m1–4� m1–2� m1�

�
q�−�

 i

�
�3

��m4;�q��
a�

�m3;�q��
b

�m2;�q�
c�

�m1;�q��
d

�Gm4�q��m4��q���
3�Vm4�m2�,m3�m1�;�q��

�Gm2�m3�m1��q��,m2�m3m1��q��
�Z� �
3�

� Gm2�m1��q��,m2m1��q�
�N� �
2�

�Gm1��q�m1�q���
1�P��q��� , �B6�

RkIII

abcd�
3,
2,
1� = 2i �
m1–4m1–4� m1–2� m1�

�
q�−�

 i

�
�3

��m4;�q��
a�

�m3;�q��
b�

�m2;�q�
c

�m1;�q��
d

�Gm4�q��m4��q���
3�Vm4�m3�,m2�m1�;�q��

�Gm3�m2�m1��q��,m3m2�m1��q��
�Z� �
3�

� Gm2�m1��q��,m2m1��q��
2�

�Gm1��q�m1�q���
1�P��q��� . �B7�

Equations �12� and �B2�–�B7� provide an exact representa-
tion of the nonlinear response for stochastic Frenkel
Hamiltonian model of aggregate.
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