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We briefly discuss relations between different variants of the second order generalized
master equations (GME), in particular among different types of the Markov–Born ap-
proximation of time-convolution GME and Born approximation in time-convolutionless
one. We prove that equivalence valid in the van Hove limit does not in general apply for
other types of scaling. On the other hand, for other scalings one appropriate form of the
interaction representation always exist that reproduces this equivalence known from the
weak-coupling (van Hove) one.
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Master equations are a well known and widely used device for treatment of pro-
cesses of relaxation. Their rigorous derivation was developed during the previous
century, though not without difficulties. However, these difficulties and the necessity
to make approximations for practical purposes resulted into development of various
variants of the master equations and their approximations. The different variants
of generalized master equation (GME) [1–6], and equivalence among their exact
(unapproximated) formulations [7–10], were extensively discussed. Also properties
of standard approximations are known (for example [11]). On the other hand, prac-
tical purposes direct scientists to use mathematically simple forms of the relaxation
description, for example the simplest form— using time-independent and time-local
relaxation coefficients. Although different approximations arise from different con-
cepts, some of these approximations are equivalent according to unchanged nature
of the physical problem and given mathematical structure of the model. Although
this fact is not unknown, there is no (as far as we know) wider publication activity
in this direction. An explicit formulation may be of some importance, because in
fact some of the traditional “equivalence” may be only proved under certain con-
ditions. We want to briefly describe the relation between the second order (Born)
approximation of time-convolutionless GME (TCL-GME) and the Born–Markov
approximation of time-convolution GME (TC-GME) outside the van Hove limit.
This case has not been discussed so far.

Now we are at the point to specify the problem we deal with. Generalized master
equations are devices for the treatment of open system evolution. We consider
Hilbert space of the physical problem to be decomposed into two factorspaces. One
of them we identify with “system” variables, the other one with the bath. The ge-
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nerator of dynamics — Hamiltonian — is accordingly decomposed into three parts.
(This decomposition is also carried over into the Liouville space Lx = (1/h̄)[Hx, . . .]
in the same way.) So

H = HS + HB + HS−B . (1)

GMEs usually concern only the information about system variables and are cor-
respondingly connected with projecting off unnecessary bath information. So, any
type of bath averaging is required. In the usual formalism introduced by Zwanzig
[3] it means to specify projection operators P in a proper way. We specify the form
of bath averaging in the most popular variant [12]:

P . . . = ρBTrB . . . , ρB =
e−βT HB

TrBe−βT HB
, Q = 1−P .

ρB is the canonical density matrix of the bath, which is also assumed to be its initial
density matrix. We assume it uncorrelated with the initial state of the system in
order to cancel inhomogeneous terms in GME. Further, we formulate some silently
assumed condition of decomposition (1). (Those can be understood as mathematical
definition of the decomposition (1).) In particular,

PLS = LSP , PLP = LSP , PLB = LBP = 0, Qρ(t = 0) = 0. (2)

The GME general formulae are considered according to work [3].
We are in fact unable to calculate the coefficients of GME exactly (except for

trivial cases). So, we have to introduce some type of a perturbational treatment and
take some finite (usually the least nontrivial, i.e. the second) order approximation.

The very popular choice is to take HS−B as a λ-dependent perturbation (the van
Hove type scaling) and to calculate relaxation coefficients up to the second order
in λ (Born approximation). In this case, an equivalence between the Born–Markov
TC-GME (6) and the Born TCL-GME (7) is found below. (For the correspondence
see e.g. [6]) TC-GME is given by the following formula [6]:

dρS(t)
dt

= −iLSρS(t)−
∫ t

0

dt′TrB[LS−Be−i(LS+LB)t′LS−BρB]ρS(t − t′). (3)

In the interaction picture
ρI(t) = eiLStρ(t), (4)

it yields:

dρI
S(t)
dt

= −eiLSt

∫ t

0

TrB[LS−Be−i(LS+LB)t′LS−BρB]eiLSt′dt′e−iLStρI
S(t − t′). (5)

Now the standard reasoning is to perform in (5) the Markov approximation (i.e. we
consider ρI in the convolution term to be time independent and then we integrate
the convolution kernel in the t → ∞ limit) . After returning into the Schrödinger
picture we obtain

dρS(t)
dt

= −iLSρS(t)−
∫ ∞

0

TrB[LS−Be−i(LS+Lb)t
′LS−BρB]eiLSt′dt′ρS(t). (6)
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With the conditions (2),(6) is clearly equivalent with the following Born approxi-
mation of TCL-GME [6](in a formal long-time limit):

dρS(t)
dt

= −iLSρS(t)−
∫ ∞

0

dt′TrB[LS−Be−i(LS+LB)t′LS−Bei(LS+LB)t′ρB]ρS(t). (7)

The above two ways to the one joint final result are usually justified by taking so
called van Hove limit. This amounts to performing the scaling

λ → 0,
t

λ2
→ const.

However, this scaling is well applicable from the physical point of view for
treatment of open system with weak interaction between the system and the bath.
In spite of its powerful usefulness one can be interested in some physically different
situations when, e.g., a part of the internal system dynamics is comparable with
that caused by the HS−B interaction. The usefulness of the van Hove scaling can be
then limited, and there were some other perturbational or scaling schemes suggested
[13]. The goal of present work is the inspection of this case.

We point out how it is necessary to take the Markov approximation of the
second order TC-GME to keep equivalence with the Born approximation TCL-GME
outside the van Hove limit. We deal with the following Hamiltonian perturbational
scheme:

HS = H
(0)
S + H

(2)
S , HS−B ∝ λ, H

(2)
S ∝ λ2. (8)

Here, H
(2)
S may describe, e.g., the above internal system dynamics. This scaling

intends to apply to the situation when the bath-assisted processes become com-
mensurable with those of the internal system dynamics [13]. However, our result
remains unchanged also for another scheme which one can derive from the Davies
work [14]:

HS = H
(0)
S + H

(1)
S , HS−B ∝ λ,H

(1)
S ∝ λ. (9)

Born approximation TCL-GME [6], performed with (8), gives the following equa-
tion:

dρS(t)
dt

= −iLSρS(t)−
∫ ∞

0

dt′TrB[LS−Be−i(L(0)
S +LB)t′LS−Bei(L

(0)
S +LB)t′ρB]ρS(t).

(10)
For comparison we refer to the Born approximation TC-GME obtained as above
but in connection with (8):

dρS(t)
dt

= −iLSρS(t)−
∫ t

0

dt′TrB[LS−Be−i(L(0)
S +LB)t′LS−BρB]ρS(t − t′). (11)

In order to save the equivalence between explicitly different (10) and the Markov
approximation to (11), we have to choose the interaction picture in the following
way:

ρI(t) = eiL
(0)
S tρ(t). (12)
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Further treatment is fully analogical to that by van Hove. Then and only then
the Markov approximation to (11) in the interaction picture (12) coincides with
(10). On the other hand if one chooses the interaction picture in the standard way
according to (4), one obtains the result

dρS(t)
dt

= −iLSρS(t)−
∫ ∞

0

TrB[LS−Be−i(L(0)
S +LB)t′LS−BeiLSt′ρB]dt′ρS(t). (13)

Clearly (13) does not coincide with (10). So the equivalence is not preserved in the
above scheme beyond van Hove limit. The equivalence remains preserved only if we
keep in mind the perturbational origin of the second order treatment of TC-GME
and if we take it into account in the choice of the interaction representation.

We conclude that equivalence between the Born approximation of TCL-GME
and a specific form (6) of the Born–Markov approximation of TC-GME is carried
over to the case of (8) scaling only in rather a specific way: it is necessary to take, in
the definition of the interaction picture, only that part of the system Hamiltonian
that is “unperturbed”.
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