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We revisit the line-shape theory of a single molecule with anomalous stochastic spectral diffusion. Waiting
time profiles for bath induced spectral jumps in the ground and excited states become different when a
molecule, probed by continuous-wave laser field, reaches the steady state. This effect is studied for the
stationary dichotomic continuous-time-random-walk spectral diffusion of a single two-level chromophore with
power-law distributions of waiting times. Correlated waiting time distributions, line shapes, two-point fluores-
cence correlation function, and Mandel Q parameter are calculated for arbitrary magnitude of laser field. We
extended previous weak field results and examined the breakdown of the central limit theorem in photon
statistics, indicated by asymptotic power-law growth of Mandel Q parameter. Frequency profile of the Mandel
Q parameter identifies the peaks of spectrum, which are related to anomalous spectral diffusion dynamics.
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I. INTRODUCTION

Single molecule experiments rapidly expanded our
knowledge about optical properties of biomolecules, organic
dyes, and quantum dots by focusing on distributions and
fluctuations of molecular parameters rather then ensemble
averages �1–4�. It posed a significant simulation challenge at
both phenomenologic and ab initio levels �5,6�. Statistics of
on-off blinking times in single CdSe quantum dots �7� and
fluorescence correlations of proteins �8� or organic dyes �9�
showed broad range of dynamical time scales in optical re-
sponse from single molecules, microscopic origin of which
remains still under debate �10–13�. Sophisticated control of
multipoint correlations was instrumental to determine under-
lying fractional Gaussian �14� and continuous-time-random-
walk �CTRW� �15,16� dynamics of fluorescence rates in bio-
molecules and quantum dots, respectively.

Structural information from the fluorescence trace is con-
veniently extracted into the kinetic schemes �17,18�. Unrav-
eling rate fluctuations into the dynamics of the transition
frequency makes one step beyond the prevailing framework.
Weak field line shapes of molecules with anomalous CTRW
spectral diffusion can be approached by ground-state multi-
point dipole correlation function within the response function
�perturbation� theory �19,20�. Theory of strong field line
shapes and photon counting statistics based on the Bloch
optical equations �21� and generating function method
�22,23� can be easily extended to account for the Markovian
spectral diffusion �24–26�. Treatment of CTRW noise, how-
ever, requires careful inspection of the steady state beyond
the master equation approach �27,28� or the perturbation
theory. Consistent theory of strong field anomalous line
shapes, which accounts for the initial steady-state correla-
tions between the bath dynamics and the Liouville space
quantum dynamics, is the goal of this paper.

The paper is organized as follows: The CTRW model of
spectral diffusion will be summarized in Sec. II. The line
shapes and the two-point correlation functions for emission
from the two-level chromophore driven by continuous-wave
�CW� laser field will be calculated in Secs. III and IV. Fi-
nally, the steady-state correlations between the state of chro-

mophore and the spectral diffusion will be shown explicitly
by calculating the probability density functions for first spec-
tral jump in the ground and in the excited state �Sec. V�.

II. CONTINUOUS TIME RANDOM WALKS
SPECTRAL DIFFUSION

The dichotomic CTRW model of spectral diffusion
�19,28,29� assumes that jumps between two bath states u and
d come randomly, with the waiting time probability densities
�WTDs� �u�t� and �d�t� for the jump from u to d and vice
versa, respectively. At the time of jump all memory is erased
�renewal� and the waiting times for the subsequent jumps are
not correlated. This renewal property makes the model solv-
able. The WTDs will be organized into a matrix in the space
of bath states �u ,d�,

��t� = � 0 �d�t�
�u�t� 0

� . �1�

Diagonal matrix of survival functions

��t� = ��u�t� 0

0 �d�t�
� �2�

describes the probability �u,d�t���t
��u,d�t��dt� to persist in

the bath state without jump from the time of renewal.

We next define �̃u,d�s���0
��u,d�t�e−stdt, and �̃u,d�s�

��0
��u,d�t�e−stdt= �1− �̃u,d�s�� /s. Normalization implies

�0
��u,d�t�dt= �̃u,d�0�=1.

The CTRWs can be broadly classified into the stationary
and nonstationary walks characterized by finite and
infinite mean waiting times t̄u,d��0

�t�u,d�t�dt= �̃u,d�0�
=−d�̃u,d�s� /ds 	s=0, respectively. Nonstationary ensembles
generated by power-law ��t��1 / t�+1 distributions of fluctua-
tion time scales with divergent t̄=� �i.e., 0���1� �30� are
standard raison d’etre for CTRW model. They show aging
�i.e., time-dependent renewal rates or correlation functions�
and weak ergodicity breaking, which obscure interpretation
of time averages of single molecule experiments by the
�commonly calculated� ensemble averages �see Chapter 11 of
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Ref. �5��. Some basic concepts of statistical physics must be
generalized for this case, such as the relation between the
correlation functions and the power spectra �Wiener-
Khinchin theorem� �31�. This anomalous power-law behavior
was reported, for instance, in power spectrum measurements
in CdSe quantum dots �32�. Signatures of nonergodic photon
counting statistics of fluorescence blinking from CdSe-ZnS
quantum dots are exhibited over any experimental window
of practical interest; keeping the true power-law statistics
��
0.5� at least for hours �16�.

In many experiments, however, the power law spans over
limited scale and cutoff turns the walk into the stationary
process �33,34� avoiding artificial preparation of the initial
state. Another case for the stationary CTRW is power-law
WTD with exponent �	1 �35,36�. Such random walks with
t̄�� are ergodic and their stationary ensembles can be es-
tablished �37�. Predictions of time-averaged physical quanti-
ties are accessible by averaging over statistical �configura-
tion� ensembles common in statistical physics �38�.

Stationary ensemble requires a consistent choice of initial
conditions. Observation is started �“initial time”� in an arbi-
trary moment during the stochastic process. Hence, some
time could be already spent from the last jump at the start;
the initial time is not a renewal time. The initial conditions
must thus include a special WTD for the first jump �F�t�
�different from ��, consistently accounting for all cases
found in the stationary ensemble.

Steady-state line shape can only be studied for the station-
ary noise, when t̄��. It still shows interesting anomalous
features, including the breakdown of central limit theorem in
photon counting statistics, provided that the power-law ex-
ponent is 1���2 �19�. We revisit the stochastic spectral
diffusion model of anomalous line shape, but relax the limi-
tations of perturbation theory.

When the anomalous bath dynamics is coupled to a quan-
tum dynamics of a two-level chromophore the steady-state
correlations between system and bath are built up. Unlike the
Markovian case, the correlation effect is not limited to the
system and bath density matrices, but the WTD for the first
jump is affected as well. The initial WTD �i,x

F �t� �x=u ,d�
thus shows specific profile for each Liouville space state i.
The consistent prescription for �i,x

F �t� and consequences for
the line shapes and photon statistics will be elaborated in the
coming sections.

III. LINE SHAPES

To that end we consider a two-level quantum system �hav-
ing ground state g and excited state e� whose dynamics in-
clude Hamiltonian evolution �H0=
eg�t�	e��e	�, spontaneous
emission with rate �, and dipole interaction with CW laser
field �Hint=−E cos�
t�	e��g	+h .c.�, where E is the Rabi fre-
quency. We also set �=1. Populations on the ground Pg and
excited states Pe and coherence �represented by real vari-
ables eg� ,eg� in the rotating frame eg=ei
t�eg� + ieg� �� shall
be organized into the vector P�t�= �Pe , Pg ,eg� ,eg� �T in the
Liouville space, where its time evolution is described by the
Bloch equations,

d

dt
Pe

Pg

eg�

eg�
� =

− � 0 0 E
� 0 0 − E
0 0 − �/2 − ��t�

− E/2 E/2 + ��t� − �/2
� ·

Pe

Pg

eg�

eg�
� .

�3�

The transition frequency 
eg�t� �and the detuning ��t��

−
eg�t�� jumps between 
eg;u=
0 and 
eg;d=−
0 associated
with the bath states u and d, respectively. The matrix of
coefficients �Liouvillean� in Eq. �3� will be hereafter denoted

by Lu and Ld. We next introduce the resetting matrix �̂ which
represents photon emission and transforms P�t� before the
emission into the density after the emission �24�,

�̂u = �̂d =
0 0 0 0

� 0 0 0

0 0 0 0

0 0 0 0
� . �4�

Complete dynamics is represented in the combined
Liouville�bath space with dimension 4�2. Symbols L and

�̂ without bath index refer to matrices in this combined
space. Hereafter we will use tracing symbol TrS for summa-
tion over the ground- and excited-state densities �1,1,0,0� and
TrSB for an additional summation over bath states TrSB
��x=u,dTrS.

Model is completed by specifying the steady-state initial
condition �including �F�. Weak field CW line shapes are re-
lated by Fourier transform to free-induction decay experi-
ment in time domain. Response function theory follows, in
fact, the latter experiment, and calculate the line shape as
ground state average �39� of the phase factor

I = Re �
0

�

dte−�t/2�exp�i�
0

t

��t��dt���
�

. �5�

The first jump WTD in the ground state �g
F is �for weak

fields� negligibly �E2 deviated from that of the pure bath
dynamics decoupled from the system �see the discussion in
Sec. V�. The standard prescription for the stationary first
jump WTD �F�t�= t̄−1�t

���t��dt� �37� thus can be employed.
This strategy is inapplicable for strong fields, and the steady-
state correlations at t=0 between bath and system must be
established by starting the random walk and switching on the
electric field at t=−�.

Expanding the strategy explained in Ref. �40� we first
calculate the renewal density �u�t�= ��e,u ,�g,u ,�eg,u� ,�eg,u� �T

�and similarly �d�t�= ��e,d ,�g,d ,�eg,d� ,�eg,d� �T�, the contribu-
tion to P�t�= �Pe , Pg ,eg� ,eg� �T from bath paths that jumped
at time t to the bath state u �d�. Renewal densities �e,u ,�g,u
are simply the densities of bath jumps to u in the excited and
the ground states, respectively. Renewal densities �eg,u� ,�eg,u�
are similar quantities, which measure the amount of coher-
ence eg� ,eg� at the renewal event to state u. Renewal density
serves as a cornerstone for memoryless description disre-
garding references to past thanks to the renewal property.
The steady-state renewal density �in the combined space �
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= ��u ,�d�� must be, at any time, reconstructed from the past
renewal densities and factor for evolution between the two
renewals

� = �
−�

0

��− t�e−Lt�dt . �6�

Equation �6� defines the steady-state renewal density up to a
normalization factor. The conservation of the total density
TrSB P�t�=TrSB �0

���t− t��eL�t−t����t��dt�=1 guarantees exis-
tence of the solution to Eq. �6� and implies correct normal-
ization of � by condition �x=u,dt̄x TrS �x=1.

Equation �6� and the steady-state intensity

I = TrSB �
0

�

�̂��t�eLt�dt �7�

are conveniently calculated by using the spectral decompo-

sition of the Liouvillean Lx=−�i=0
3 �i,xD̂i,x, into four eigenval-

ues �i,x �i=0, . . . ,3� and associated D̂i,x �nonorthogonal�
4�4 projection matrices �D̂i,xD̂j,x=�ijD̂i,x� onto their invari-
ant subspace in each bath state x=u ,d. Decomposition will
be reconstructed numerically from the left and right eigen-
vectors of Lx.

After transforming to the Laplace space ��̃�s−L�
��0

���t�e−st+Ltdt�, Eq. �6� reads

� = �̃�− L�� , �8�

and by applying the spectral decomposition and resolving the
bath variables, Eq. �8� turns into an eigenvector problem in
the Liouville space of u state,

�
i=0

3

�
j=0

3

�̃d��i,d��̃u�� j,u�D̂i,dD̂j,u�u = �u. �9�

The renewal density in the d state is then

�d = �
j=0

3

�̃u�� j,u�D̂j,u�u,

and Eq. �7� becomes

I�
� = �
i=0

3

�
x=u,d

�̃x��i,x�TrS��x
ˆ D̂i,x�x� . �10�

Figure 1 demonstrates the effect of a strong laser field on
anomalous line shapes. Anomalous spectral jumps between
the fundamental frequencies 
eg= �
0 are implemented by
using power-law ���t��1 / t�+1� WTD,

�̃u�s� = �̃d�s� =
1

1 + t̄s/�1 + ��s��−1�
; 1 � � � 2. �11�

Two regimes of spectral random walk distinguish whether
typical waiting time t̄ is sufficiently long to resolve differ-
ence between transition frequencies �2
0. Line shapes of
the slow fluctuation regime �t̄
0�1� consist of two sharp
peaks at fundamental frequencies 
= �
0 �right panel in
Fig. 1�. Peaks represent bath trajectories with long periods of
persistent behavior. Such periods are always present in
anomalous CTRW dynamics regardless of parametrization,
measured by the survival function of the first jump �F. So,
the 
= �
0 peaks are identified even in fast fluctuation
�t̄
0�1� line shape �left panel�, in contrast to Markovian
spectral diffusion, where similar peaks disappear in the fast
limit �41�. Periods of fast diffusive motion are represented in
the fast fluctuation �t̄
0�1� line shapes by an additional
motional narrowing peak at the central frequency.

Good qualitative agreement with the perturbation theory
is obtained in the weak field regime �violet dotted line�, ex-
cept that the singular analytical peak structure I
�
�
0��

predicted by perturbation theory �19� for �=0 cannot be
fully reproduced �42�. Correct account of the steady-state
system-bath correlations do not affect weak field line shapes
too much because dominant occupation of the ground level
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FIG. 1. �Color online� Absorption line shape �Eq. �10�� of the two-level molecule with dichotomic CTRW noise �Eq. �11�� parametrized
by �=1.5, � / t̄=2 /3, � /
0=0.001 in the fast t̄
0=0.2 �left panel� and slow t̄
0=2.0 �right panel� fluctuation limits. Weak field line shape
E /�=1 �violet, dotted line� is magnified �60 times at left and 40 times at right panel�, other curves E /�=20 �blue, dashed line�, E /�=50
�green, long-dashed line�, and E /�=100 �red, solid line� are plotted without rescaling. Spectral random walk corresponds to that of Fig. 1
�middle top and central panel� in Ref. �20�, where the weak field line shapes were calculated by using perturbation theory.
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implies small correlations in ground state �g
F �as will be dem-

onstrated in Sec. V� and assumptions of the perturbation
theory are thus satisfied.

When the intensity of laser field is increased beyond the
weak field limit, the saturation broadening �E is identified
on all peaks as dominant contribution to the peak width for
E�� line shapes �blue dashed, green long-dashed, and red
solid lines in Fig. 1�. Finite laser fields E also suppress the
I� �
−
0�� singularity reported in Ref. �19�; however, the
two peaks at fundamental frequencies 
= �
0 remain rather
sharp unless the transition is nearly saturated at E=100� �red
solid line�.

IV. PHOTON COUNTING STATISTICS

Next we inspect the photon counting statistics. To that end
we introduce the propagator ��t�, matrix in the combined
space, whose �ix,jy�t� element is the conditional density that
system renewed in bath state y=u ,d �and residing in the
Liouville space state j=e ,g ,eg� ,eg�� at some arbitrary time
ta will be renewed again after time t �i.e., at ta+ t� to bath
state x in the Liouville space state i. During the interval
arbitrary number of bath jumps and any Liouville space dy-
namics can occur. Propagator is constructed in analogy with
Eq. �6� �40�,

��t� = ��t� + �
0

t

��t − t��eL�t−t����t��dt�. �12�

Equation �12� is conveniently solved in the Laplace space

�̃�s�= �1−�̃�s−L��−1. The bath space indices can be readily
resolved yielding the Liouville space blocks

��̃�s��uu = �1 − �
ij=0

3

�̃d�s + �i,d��̃u�s + � j,u�D̂i,dD̂j,u�−1

,

��̃�s��du = �
j=0

3

�̃u�s + � j,u�D̂j,u��̃�s��uu. �13�

Blocks ��̃�s��dd and ��̃�s��ud are implied by interchange of
indices u and d in Eq. �13�.

With Eq. �13� we are ready to calculate the joint probabil-
ity to detect photons at two times, 0 and t �two-point corre-
lation function�. We follow dynamics from the steady state at
the time of the last jump t− before the first detection. We sort
the bath paths into two groups: the first one �see Fig. 2, �i��
includes the bath paths which have at least one jump be-
tween the two detections at 0 and t, and the other one has no
jump �see Fig. 2, �ii��. In the former case we consider times
t1 and t− t2 of the first and the last jumps in the interval �0, t�,
respectively. The dynamics between times −t− ,0 is described

by factor eLt−, the emission at t=0 by resetting matrix �̂, the
evolution between 0 and t1 by matrix eLt1, and the jump at t1
by matrix ��t1+ t−�. The propagation between t1 and t− t2,
including all jumps, is described by ��t− t1− t2�. The final

evolution is accounted by ��t2�eLt2, and �̂ stands for the
second emission. The latter contribution �Fig. 2, �ii�� shows
no bath dynamics and we can follow standard theory of pho-

ton counting �24�, except the final convolution with the sur-
vival function �. The two-point correlation function is fi-
nally obtained by integrating over possible t− , t1 , t2

g�2��t� = �
0

t

dt2�
0

t−t2

dt1�
0

�

dt− TrSB��̂��t2�

� eLt2��t − t1 − t2���t1 + t−�eLt1�̂eLt−��

+ �
0

�

dt− TrSB���t + t−��̂eLt�̂eLt−�� . �14�

Equation �14� has a natural convolution structure. The inte-
grations can be carried out in the Laplace space, and taking
the summations over bath index explicitly, we get Liouville
space formula

g̃�2��s� = �
ijk=0

3

�
xyz=u,d

�̃y�s + �k,y�
�̃x�s + � j,x� − �̃x��i,x�

s + � j,x − �i,x

� �1 − �zx�TrS��̂yD̂k,y�y,z�s�D̂j,x�̂xD̂i,x�x�

+ �
x=u,d

�
ij=0

3
�̃x�s + � j,x� − �̃x��i,x�

s + � j,x − �i,x

�TrS��x
ˆ D̂j,x�x

ˆ D̂i,x�x� , �15�

suitable for implementation.
Numerical inverse Laplace transform of Eq. �15� was

used to calculate the two-point correlation function shown in
Fig. 3. Short time antibunching g�2�� I2 represents the era-
sure of coherence during photon emission. Bunching g�2�

	 I2 at later times is normally caused by either Rabi oscilla-
tions or the correlation between bath and Liouville space
populations. CTRW spectral diffusion has an additional
source of bunching in the steady-state correlation of the ini-
tial WTD and the Liouville space state. Memory is mani-
fested at fundamental frequencies 
= �
0 �left panel�,

FIG. 2. Contributions from two types of bath trajectories are
calculated separately in Eq. �14�. Bath jumps are depicted as inter-
sections of the curve with the time axis. The �i� diagram represents
all bath paths with at least one bath jump between the two emis-
sions. In the �ii� diagram no jump occurs between the two emission
at 0 and t. Ground line is time axis �time goes from right to left�,
bath jumps are depicted as intersections of the curve with the time
axis.
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while at the central peak, backed by fast fluctuations, bunch-
ing does not show up �central panel, dashed line�. The cor-
relation function shows anomalous power-law decay �top
right panel� g�2��t�=g�2����+c� / t�−1 toward its asymptotic
value g�2����= I2 �43�.

Another measure of photon count, the Mandel Q param-
eter Q�T����N2�− �N�2� / �N�, characterizes statistical distri-
butions of photon count N binned over time window T. In
most cases, �e.g., when spectral diffusion is Markovian, or
for �	2� the distribution of photons approaches the Gauss-
ian statistics with T→� and constant asymptotic value of
Mandel Q parameter characterizes the deviation of variance
from the Poissonian statistics of emission �44�. The break-
down of central limit theorem is signified by asymptotically
growing Mandel Q parameter. Ballistic Q�T��T �for 0��
�1� and power-law Q�T��T2−� �for 1���2� expansions
of Mandel Q parameter has been studied for aging random
walks of fluorescent intensities �19� and the ballistic case
was already observed in fluorescence from CdSe-ZnS quan-

tum dots �16�. Since Q�T�= �IT�−1�0
T�0

t��g�2��t��− I2�dt�dt�
�21�, coefficient c� determines the asymptotic growth of
Mandel Q parameter for stationary random walks �Eq. �11��,

Q�T� 

c�T2−�

�2 − ���3 − ��I
.

Numerical costs of inverse Laplace transform can be avoided
in the Laplace space, where c� can be deduced from s→0
asymptotic expansion g̃�2��s�=g�2���� /s+c���2−��s�−2,
where ��z���0

�xz−1e−xdx is the Gamma function. Term
g�2���� does not enter when inspecting imaginary part of
sg�2��s� along some line s= 	s	ei� �� is fixed� in complex
plane,

Im sg̃�2��s� 
 c���2 − ��sin���� − 1��	s	�−1 �16�

Frequency profile of c� has only two symmetric very sharp
peaks at fundamental frequencies 
= �
0, but no peak at
the central frequency even in the fast fluctuation limit. The
peak at 
=−
0 is shown at the right bottom panel of Fig. 3
for two magnitudes of the laser field corresponding to line
shapes of Fig. 1, left. Peaks of Mandel Q parameter become

weaker �relatively to I� and less sharp with increasing mag-
nitude of the laser field. These results can be understood as a
picture of periods of rapid bath fluctuations and persistence
during anomalous spectral diffusion �40,45�. The former pe-
riods are responsible for the central peak of I spectrum �Fig.
1� and do not carry memory responsible for asymptotic
growth of Mandel parameter. The other peaks of I spectrum
are caused by the persistent periods, and thus are represented
in c� spectrum. The asymptotic Mandel Q parameter can
thus help to distinguish between peaks of spectra of different
origin. Our observation is consistent with 2D line shapes of
coherent nonlinear spectroscopy—another four-point dipole
correlation probe. Periods of both types are simultaneously
represented in the single molecule spectrum and the 2D spec-
trum by the static and the motionally narrowed peaks and
only the former carry anomalous peak dynamics �40�. Satu-
ration effects make the spectral lines less resolved and sup-
press system-bath correlations because the occupation of the
ground and excited states becomes alike for any detuning
��t�.

Presented algorithm can be easily extended to the multi-
point correlation functions g�k�. The bath paths shall be clas-
sified in the spirit of Ref. �40� �see Figs. 3 and 4 therein� and
the algorithm for constructing many-interval response func-
tions should be adapted to account for more general dynam-
ics L, such as treated here, for the factor of the photon emis-

sion �̂ and for the steady-state initial condition Eq. �6� in the
way explained earlier in this section. Higher, kth factorial
moment F�k���N�N−1� . . . �N−k+1�� of photon counting
statistics F�k� can be obtained by integrating out the correla-
tion function �see Chapter 4 of Ref. �5� for details�, yielding
the Laplace space formula

F̃�k��s� =
k!

s2 g̃�k��s,s, . . . ,s� . �17�

The full counting statistics shall be calculated by straightfor-
ward implementation of the generating function approach
�24� to our algorithm. For the evolution during binning in-
terval 0 ,T the Liouvillean should be standardly replaced by

L�=L+ �ei�−1��̂, where � is an auxiliary variable. Evolution
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FIG. 3. �Color online� Two-point correlation function g�2��t� �Eq. �10�� of the system in Fig. 1, fast bath limit �=1.5, � / t̄=2 /3, � /
0

=0.001, t̄
0=0.2. Left: Weak laser field E /�=1 tuned on the transition frequency of the u state �u=0.0, �d=2.0 �violet, solid line� Central:
Increased magnitude of field E /�=20 �blue, solid line� or tuning on the central peak �u=−1.0 �d=1.0 �brown, dashed line� reduces the
bunching. Right top: Linearity of log-log plot proves the power-law asymptotic decay of g�2��t� / I2−1 for the system of the left panel E /�=1,
�u=0.0, �d=2.0. Right bottom: Coefficient c� �Eq. �16�� of asymptotic power-law growth of the Mandel Q parameter as a function of
frequency. Peak around the transition frequency 

−
0 is shown for the weak E /�=1 �violet, solid� and strong E /�=20 �blue, dotted� laser
field.
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at earlier times and the calculation of the steady state � �Eq.
�6�� remains unaffected, and represented by L �46�. The gen-
erating function reads

G�T,�� = �
0

t

dt2�
0

t−t2

dt1�
0

�

dt− TrSB ��t2�

� eL�t2���t − t1 − t2���t1 + t−�eL�t1eLt−�

+ �
0

�

dt− TrSB ��t + t−�eL�teLt−� �18�

and can be transformed to photon count distribution by
C�T ,N�=�0

2�G�T ,��e−i�Nd�.

V. STEADY-STATE DISTRIBUTIONS OF THE FIRST
SPECTRAL JUMP

Our consistent �steady-state� choice of initial state �Eq.
�6�� makes the difference against the perturbation approaches
of Refs. �19,20� based on the ground-state dipole correlation
functions. Traditionally, the initial condition is set up by
specifying �F. Thus we will construct the steady-state initial
WTDs in the ground and excited states explicitly.

To that end we introduce the projector Pe onto the excited
and Pg onto the ground state, represented in the Liouville
space by matrices

Pe =
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
�, Pg =

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0
� .

Following the above explained principles we find the WTD
for the first jump �ix

F from the bath state x=u ,d at the mo-
lecular state i=e ,g to be

�ix
F �t� =

�
j=0

3

TrS PiD̂j,x�x�
0

�

�x�t + t��e−�j,xt�dt�

�
k=0

3

�̃x��k,x�TrS PiD̂k,x�x

. �19�

Denominator of Eq. �19� is the steady state density of par-
ticles in the ix state, and ensures correct normalization
�0

��ix
F �t�dt=1. Equation �19� and power-law tailed WTDs

�u=�d� �� / t��+1 were used to plot Fig. 4. Figure 4 docu-
ments the different steady-state distribution of waiting times
for the first spectral jump in the excited state and in the
ground state of the two-level molecule at rather weak laser
fields. Ground-state WTDs �gu

F and �gd
F do not differ signifi-

cantly from �x
F�t�= t̄x

−1�t
��x�t��dt� �x=u ,d�, the total first

jump WTD from u for weak laser fields. Weighted sum of
WTDs �eu

F and �eu
F must correspond to �u

F�t�, i.e., Peu�eu
F

+ Pgu�eu
F = �Peu+ Pgu��u

F�t�, and since Peu→0 in the weak
field limit, �gu

F →�u
F�t�. The replacement of �gu

F , �gd
F by �F�t�

is thus justified for weak field line shapes. The excited-state
WTDs �significant for the two-point correlation function
g�2��, on the other hand, show large deviations from �F�t�,

consistent with the picture of persistent periods discussed
above. Laser at resonance with transition frequency of bath
state d makes the excited-state population mostly contributed
from the paths persisting at d. Since the persistent particles
have also delayed expectations of coming jump, �ed

F shows
significantly longer tails than �eu

F , �gd
F , or �gu

F . Complex time
profiles of Fig. 4 reflect changing proportion between � j�0
contributions �dt�e−�jt� / �t+ t���+1�1 /� jt

�+1 and �0=0 contri-
bution �dt�1 / �t+ t���+1�1 / t� to the nominator of Eq. �19�.
Increased magnitude of the laser field tends to suppress the
correlation effect in the excited state. Weak field theory of
two-point correlation function would thus rather overesti-
mate the correlation effects. In other words, the bath corre-
lations show up more sensitively for weak fields as we have
documented at Fig. 3 for Mandel Q parameter.

Some useful insights could be naively expected by intro-
ducing projection Peg on the eg coherence matrix element.
However, while �e,x

F , �g,x
F can be unambiguously interpreted

as the initial WTDs, different �F are predicted for the real eg�
and the imaginary part eg� of the coherence by Eq. �19�. The
correlation effect cannot be described in terms of initial
WTDs for the coherence matrix element.

We should address how quickly is the steady-state �6�
built up when the electric field is switched on at finite time
before detection. Most effects of switching on the electric
field are relaxed at ��−1 time scale. Nevertheless, rebuild of
�ix

F to a new steady state �different from that of E=0� also
induces some long-lived component, with time profile simi-
lar to bath relaxation. So, the steady state is approached with
1 / t�−1 power law decay for WTD of Eq. �11�. This may seem
to obscure some of our asymptotic conclusion. They are,
however, correct in the following sense: Predicted
asymptotic power-law decays are relevant for shorter �future�
times than the time elapsed from the laser switch on.

In conclusion, we generalized theory of anomalous line
shapes to arbitrarily strong driving fields, where the initial
steady-state correlation between the Liouville space and bath
space dynamics must be accounted for. We revisited line
shapes and photon counting statistics of the two-level chro-
mophore with CTRW dichotomic noise, and showed fre-
quency profiles of asymptotic growth of Mandel parameter

10 -5
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10 -1

10 0

0.01 0.1 1 10 100t/τ

τψF(t)

FIG. 4. �Color online� Initial WTD �Eq. �19�� in the excited state
�eu

F �blue dotted line�, �ed
F �green solid line�, and in the ground state

�gd
F 
�gu

F 
�F �red dashed line� are plotted for power-law WTD
�u�t�=�d�t�� �� / t��+1 at long times �t	1� with an early �t�1� ex-
ponential onset �u�t�=�d�t��e��+1��1−t/��. Parameters: ��=1, E /�
=0.1, �d /�=5.0, �u /�=−0.01, and �=1.5.
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�related to non-Gaussian photon statistics� at steady state
formed by applying laser field of arbitrary magnitude. Mi-
croscopic picture of anomalous spectral diffusion drawn by
the photon counting statistics is consistent with that drawn
by the multidimensional line shapes of coherent nonlinear
spectroscopy. Ensembles �or sufficiently long single mol-
ecule bath trajectories� show both signatures of fast fluctuat-
ing particles �motional narrowing� and the fraction of par-
ticles persisting for long time in the same bath state.
Asymptotic Mandel parameter identifies peaks at fundamen-
tal bath frequencies, which are related to the persistent
behavior, and can help to discriminate between microscopi-

cally nonequivalent models with similar absorption spectrum
�47�.
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