INTRODUCTION

We present a computational model for the spectra of molecular aggregates
with signatures of vibronic progression. Vibronic dynamics is implemented
by coupling the dynamics of Frenkel excitons with underdamped vibrati-
ons. Vibrational dynamics includes linear damping resulting in the expo-
nential decay and quadratic damping inducing subexponential or power law
relaxation and increasing vibrational decoherence as demonstrated on line-
shapes of the absorption spectrum. Simulations of the third-order coherent
response account for bath reorganization during excitonic transport, which
allows us to study the line-shape evolution of cross peaks of 2D spectra.

VIBRONIC DYNAMICAL MODEL

Vibronic aggregate is modeled as coupled two 2-level electronic systems (ex-
citon operators A', A;), high frequency vibrational modes (bosonic V,L-sz, Vi 2)
are taken into account
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Ji; 1s the resonant coupling between i-th and j-th chromophore. The vibronic

states are coupled to a gaussian bath Hp = > E,;Bk.
System-bath interaction is responsible for damping of vibrational modes and
electronic dephasing. Three different couplings are included
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where the three terms V-constant, V'-linear and V'-quadratic are responsible
for electronic dephasing, for exponential vibrational relaxation and for non-
linear vibronic-bath couplings, respectively. Spectral density of the Brownian
overdamped oscillator representing Gaussian-Markovian coordinate with
single relaxation rate A was used
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NONLINEAR BATH-VIBRATIONAL COUPLING

Dynamical effects of the system-bath coupling are accounted up to the se-
cond order using master equation [1]. Master equation for populations trans-
formed into the evolution equation for energy (E<) = > n(n — 1)w?ppnn
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power law decay att < 1/V(w)
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assymptotic exponential decay

Broadening induced by R rates

;V(w) — 10 cm—l,‘W(Zw) —0cm ! -
-V(w) =0 cm™, W(2w) =T em™ | '
~V(w) =10 cm ™, W(2w) =L em ™!

Subexponential relaxation
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Dephasing rates R0 = nV(w) + n(n — 1)W(2w)

2D LINESHAPE EVOLUTION
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Top: 2D peak shapes of transport emission pathways (diagrams S7, S3) for

increasing delay times A g4to = 0, Aate = 0.5 and A 422 = 2.
Right bottom: Stokes shift and ellipticity defined as the ratio of diagonal and
anti-diagonal FWHM of the peak as a function of delay time.

EFFECT OF NONLINEAR
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A) Level scheme of the excited state manifold E of vibronic dimer. States |+)
and |—) are symmetric and anti-symmetric combinations of the local states.

B) Feynman diagrams for the vibrational cross peak (VCP) at frequencies
(21,9Q3) = (e4,e4 —w), prime marks first vibrational level, e.g. |[¢") = |g) |11).
C) Modulation of the VCP peak. The blue line represents simulation with
linear vibration bath coupling H v, For the black line, quadratic vibration-

bath coupling Hyy is added.

CONCLUSIONS

e Vibronic model was successfully applied to model excitation transfer
and (non)linear spectra of dyadic systems such as carotenoid-
chlorophyll or rylene dyads.

e Relaxation dynamics beyond the exponential decay was obtained by
employing quadratic vibrational-bath coupling.

e Effects of quadratic coupling on lineshape were investigated.
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