Preparation of Nanostructures (Příprava Nanostruktur)

Jaroslav Hamrle

jaroslav.hamrle@vsb.cz

September 23, 2013

Outline

1 Introduction

2 Bulk crystal growth

3 Thin film preparation
4 Lateral structures
5 Surface plasma resonance

Type of structures

Types of structures

- bulks (including bulk superstructures)
- Iayers
- 2D structures (lithography, self-organizing growth)
- 3D structures (special lithography, 3D printing)

Basic material structures

Basic material structures from material point of view:

- single crystal (also known as monocrystals or epitaxial)
- polycrystals (small single crystals randomly oriented)
- amorphous (e.g. glass)

Outline

1 Introduction

2 Bulk crystal growth

3 Thin film preparation
4 Lateral structures
5 Surface plasma resonance

Crystal growth techniques I: using one solvent

• slow cooling of the solvent (*rozpouštědlo*): substances that are much more soluble in a solvent at high temperature than at low temperature

slow evaporation of the solvent [solvent evaporates → crystal growth]
solvent can be also liquid metal (e.g. Sn-tin)

http://en.wikipedia.org/wiki/Recrystallization_(chemistry)

Crystal growth techniques I: using two solvents

Two solvents (substances that are very soluble in one solvent and insoluble in a second solvent. The two solvents must be miscible, i.e. soluble in each other in all proportions):

- two solvent evaporation [dissolve substance in good solvent → add bad solvent → good solvent evaporates → crystal growth in bad solvent]
- two solvent liquid diffusion [dissolve substance in good solvent → add bad solvent → crystal growth in mixture of bad and good solvent].
- two solvent vapour diffusion [dissolve substance in good solvent \rightarrow add bad solvent to surrounding \rightarrow bad solvent mixes with good through diffusion of vapours \rightarrow crystal growth in bad solvent]

Crystal growth techniques II: Czochralski process

- hight quality crystal growth of single crystals, to very large size (length 1-2 m, industrial diameter for wafers upto 450 mm)
- semiconductors (e.g. Si, Ge, GaAs), metals (e.g. Pd, Pt, Ag, Au), salts, etc.
- defects later removed by subsequent zone recrystallization.

Introduction Bulk crystal growth Thin film preparation Latera

Crystal growth techniques III: Laser Heated Pedestal Growth (LHPG)

- similar to Czochralski process, but no crucible needed
- heating by power laser
- high purity and low stress crystals
- allows to growth materials with very high melting points
- when heating starts with single crystal on top, can produce single crystal

Polycrystal growth: arc melting/remelting

- melting or remelting in week vacuum (usually Ar residual atmosphere)
- creation of metal polycrystals, with defined composition
- allows to melt small amounts of materials
- vacuum remelting and slow cooling: removal of residual gas and high vapour pressure elements (C,S,O,Mg), larger crystal size, stable structure obtained.

Huag et al, Materials Science and Engineering: A 422, 309, (2006)

Crystal growth: nucleation

1. Crystal nucleation:

- small particle of crystal is created (nucleated), with random crystallographic orientation.
- homogenous/heterogenous (without/with influence of the external particle).
- nucleus appears slowly (then crystal may growth quickly).
- external crystal can be used as a seed.

Crystal growth: growth

2. Crystal growth:

- In ideal case, crystal grows layer by layer added to the nucleated seed. The interface between crystal and vapour/solvent is atomically sharp.
- Non-uniform lateral growth: The surface advances by the lateral motion of steps which are one interplanar spacing in height.
- Uniform lateral growth: The surface advances normal to itself without the necessity of a stepwise growth mechanism.

Outline

1 Introduction

2 Bulk crystal growth

3	Thin film preparation
4	Lateral structures
5	Surface plasma resonance

Thin film preparation

Techniques of thin film preparation

- physical techniques (usually physical vapour deposition, differing by source of vapour (MBE, sputtering, ion plating))
- chemical techniques (spin coating, chemical solution deposition (sol-gel), chemical vapour deposition)

Introduction Bulk crystal growth Thin film preparation Lateral

Physical deposition techniques: physical vapour deposition (PVD)

$\label{eq:pvd} \mbox{PVD involes: Vapour formation} \rightarrow \mbox{vapour transformation} \rightarrow \mbox{film formation}$

Vapour phase creation:

- evaporation
- sputtering
- ion plating

Vapour transportation:

- collisions (can be related with cluster formation)
- ionizations

Condensation on substrate:

 nucleation, growth, ion bombardment, redeposition etc.

Example of molecular beam epitaxy, (M.Jourdan, Mainz)

Sources of vapours I: electron beam evaporators

Local heating by electron bombardment \rightarrow evaporation of the target material \rightarrow clean deposition of the target

www.mbe-components.com

Introduction Bulk crystal growth Thin film preparation Lateral

Source of vapours II: Effusion cells (Knudsen Cell)

Thermal evaporation out of a heated crucible (Tmax \approx 1800°C)

www.mbe-components.com

Source of vapour III: Pulse laser deposition (PLD)

Problem of PLD: droplets (μ m-sized balles deposited together with vapour). http://www.egr.msu.edu/

Control of the deposition

Deposited thickness gauge

Oscillating Crystal Monitor [change of mass \rightarrow change of resonance frequency]

Mass Spectrometer

Sputtering

Sputtering:

- ejection of atoms from target due to bombardment of energetic particles ($E \gg 1 eV$).
- commonly use for thin-film deposition, etching or analytical material study.
 - Create plasma (dc, rf, mw)
 - 2 plasma looses energy to surroundings (bombardment)
 - I for plasma, atoms of noble gas of similar weight as target is used (e.g. Ar for 3d metals)

dc-sputtering

http://www.ajaint.com/whatis.htm

dc-sputtering: Glow Discharge

Sputtering: example

Sputtering: industrial sputtering of glass

Figure 1: Horizontal inline sputter coater for architectural glass; annual throughput up to 8,000,000 m²

Sputtering: magnetron

Sputtering: magnetron

Added magnetic field drives free electrons:

- electrons do not touch the target, and hence do not heat it
- electrons are localized above the target, and hence enhancing probability of ionization of nobel gas ⇒ increases deposition rates
- $\bullet\,$ reccombination of free electrons and ions \Rightarrow glowing plasma

Sputtering: magnetron

Sputtering: rf sputtering

- Plasma is generated by radio-frequency (rf) field (MHz).
- Rf-sputtering avoids charge build-up on insulating targets (e.g. allows to sputter oxides).

lon plating

Atoms of target are ionized, to increase their speed prior the deposition \rightarrow atom can penetrate deeper into the substrate **Goal (1):** placement of atoms into substrate:

- gold plating
- steel hardening (e.g. layer of TiN)

Goal (2): crystal defects caused by atom irradiation:

- interface roughness control (magnetization anisotropy control)
- defects in AFM/FM interface \Rightarrow exchange bias control

• . . .

Introduction Bulk crystal growth Thin film preparation Lateral

PVD techniques - comparison

http://www.eclatcoating.com/learn/pvdcoating.php

Chemical deposition

- Involves chemical change at a solid surface
- Unidirectional deposition
 - electroplating (Although very cheap, very high quality Au/Co layers with atomically sharp interface has been demonstrated.)
 - chemical solution deposition (CSD), or sol-gel (transformation of colloidal solution (sol) into solid layer (gel))
 - spin-coating: liquid precursor is spread on a thin plate by spinning.
 - chemical vapour deposition (CVD): gas precursor.
 - dip coating
 - electrospray deposition

Chemical vapour deposition (CVD)

- Film components bound in gas molecules
- Gas molecules directed on heated substrate
- Chemical reaction creates film material
- Gaseous by-products

GaN deposition $(NH_3+TriMetylGalium)$

http://thermodynamik.uni-duisburg.de/mitarbeiter/atakan/cvd_intro.htm

CVD - reactors

http://www.timedomaincvd.com

gallium nitride - industrial CVD reactor

The C(lose) C(ouple) S(hower) Head reactor

gallium nitride - industrial CVD reactor

19x2" CCS Reactor

vernead

ed Shov

Thomas Swan Scientific Equipment

Jaroslav Hamrle Preparation of Nanostructures(Příprava Nanostruktur)

gallium nitride – industrial CVD reactor

CCS MOCVD System

Jaroslav Hamrle Preparation of Nanostructures(Příprava Nanostruktur)

Electrospray deposition

Outline

1 Introduction

2 Bulk crystal growth

Photolithography: top-down approach

First, entire layered structure is grown. Then part of it is etched.
Lateral limit given by optical resolution (can be overcome UV light, extreme UV, X-ray etc, sub-wavelength diffraction masks, immersion photolithography)

• Instead of mask and subsequent optical illumination, exposure can be done by e-beam.

• current lateral resolution cca 16 nm.

http://withfriendship.com/user/levis/photolithography.php

Introduction Bulk crystal growth Thin film preparation Lateral

Lithography: standard and lift-off process

- Lift-off: mainly to have good metal/metal interface. Advantages:
 - •do not need etching.
 - Disadvantages
 - •Retention: not all (usually metallic) layer is washed out and stays on the wafer.
 - •Ears: When the metal is deposited, and it covers the sidewalls of the resist, "ears" can be formed.
- •Redeposition: it is possible that particles of metal will become reattached to the surface, at a random location.

http://www.microresist.de

Focused ion beam (FIB) nanofabrication

Focused ion beam (FIB):

- source of ions (usually Ga⁺ or He⁺)
- beam optics (similar to scanning electron microscopy)
- ions ar focused to sample surface (focus diameter down to 1 nm)
- local remove of atoms by ions (FIB-milling)

http://web2.ges.gla.ac.uk/~mlee/FIBtec.htm

FIB nanostructures examples

http://nano.aalto.fi/en/research/groups/mqs/
research/micro_and_nanofabrication/

www.raith.com

Bottom-up approach

- The opposite of the top-down approach.
- Instead of taking material away to make structures, the bottom-up approach selectively adds atoms to create structures.

http://idol.union.edu/~malekis/ESC24/KoskywebModules/sa_topd.htm

The Ideas Behind the Bottom-up Approach

Nature uses the bottom up approach.

- Cells
- Crystals
- Humans

Chemistry and biology can help to assemble and control growth.

http://www.csacs.mcgill.ca/selfassembly.htm

Why is Bottom-Up Processing Needed?

- Allows smaller geometries than photolithography.
- Certain structures such as Carbon Nanotubes and Si nanowires are grown through a bottom-up process.
- New technologies such as organic semiconductors employ bottom-up processes to pattern them.
- Can make formation of films and structures much easier.
- Is more economical than top-down in that it does not waste material to etching.

http://courses.ee.psu.edu/ruzyllo/ee518/EE518_Top-down%20and%20Bottom-up1.ppt

Self Assembly

- The principle behind bottom-up processing.
- Self assembly is the coordinated action of independent entities to produce larger, ordered structures or achieve a desired shape.
- Found in nature.
- Start on the atomic scale.

Example 1: self-assembled nanodots

Self-assembled monolayer of 340 nm-diameter polystyrene spheres Ni film deposited and balls removed

AppliedSurfaceScience257,8712,(2011)

Introduction Bulk crystal growth Thin film preparation Latera

Example 2: Self-assembled Monolayers (SAMS)

- Molecules are deposited molecule-by-molecule to form a self-assembled monolayer.
- Creates a high quality layers.
- Layers are deposited one layer at a time.
- Organic molecules can't be deposited using extreme conditions because it would damage the organic molecules.
- SAMS technique does not damage organic molecules.
- SAMS films are nearly defect free.
- Used to deposit organic semiconductors.

Substrate (metals, semiconductors, ceramics, polymers, etc.)

http://www.mtl.kyoto-u.ac.jp/english/ laboratory/nanoscopic/nanoscopic.htm

http://www.seas.upenn.edu/

Introduction Bulk crystal growth Thin film preparation Lateral

Other examples of self assembly

carbon nanotubes

• . . .

Outline

1 Introduction

2 Bulk crystal growth

3	Thin film preparation
4	Lateral structures
5	Surface plasma resonance

Surface plasmon I: derivation

Electric field in the vicinity of the interface:

$$E = E_O \exp[i(k_x x + k_z z - \omega t)]$$

where

$$k^{2} = k_{x}^{2} + k_{z}^{2} = \epsilon \left(\omega/c\right)^{2} = \epsilon k_{0}^{2} \qquad (1)$$

At the interface of two materials ϵ_1 and ϵ_2 : (a) k_x continuous over the interface;

$$k_{x1} = k_{x2} \tag{2}$$

(b) D_z and E_x continuous over the interface

$$k_{z1}/\epsilon_1 = k_{z2}/\epsilon_2 \tag{3}$$

Surface plasmon II: dispersion relation

• From Eqs.(1–3) follows dispersion relation for surface plasmon:

$$k_x = k_0 \sqrt{\left(\frac{\epsilon_1 \epsilon_2}{\epsilon_1 + \epsilon_2}\right)},$$
 (4)

where $k_0 = \omega/c$. • Surface plasmon appears only for p-polarized (TM) wave, as this mode has normal (z) component of $D = \epsilon \epsilon_0 E$ field.

Surface plasmon III: example

Example: assuming $\epsilon_1 = 1$ (air) and $\epsilon_2 = 1 - \frac{\omega_p^2}{\omega^2}$ (metal as free electron model of an electron gas). Then

$$k_{x} = \frac{\omega}{c} \sqrt{\left(\frac{\omega^{2} - \omega_{p}^{2}}{2\omega^{2} - \omega_{p}^{2}}\right)} \quad (5)$$

Hybridization between photon $(\omega = ck_0)$ and plasmon $\omega_{SP} = \omega_p/\sqrt{2}$.

Introduction Bulk crystal growth Thin film preparation Lateral

Surface plasma resonance (SPR) I

Resonance between incident wave photon and surface plasmon. Resonance means that both (pseudo)-particles have equal ω and k_x = k_{x,inc} = ℜ(k_{x,sp}).
Description of incident wave from material ε₁ under angle φ:

$$k_{x,inc} = \frac{\omega}{c} \sqrt{\epsilon_1} \sin \varphi \tag{6}$$

• Description of surface plasmon:

$$k_{x,sp} = \left(\frac{\omega}{c}\right) \sqrt{\left(\frac{\epsilon_1 \epsilon_2}{\epsilon_1 + \epsilon_2}\right)},\tag{7}$$

Condition for existence of the resonance: $\Re(\epsilon_2) < -\epsilon_1$ (i.e. $\Re(\epsilon_2)$ must be negative; fulfilled by coinage metals, Au, Ag, Cu). Here, ϵ_1 is assumed to be non-absorbing material (i.e. $\Im(\epsilon_1) = 0$).

Jaroslav Hamrle

Preparation of Nanostructures(Příprava Nanostruktur)

Surface plasma resonance (SPR) II

Surface plasmons are very sensitive to slight perturbations within the skin depth \Rightarrow surface plasmons are often used to probe tiny changes of refraction index near the interface (extreme sensitive detector of small changes of the refraction index). \Rightarrow Readout of many bio-sensors based on this detection technique.

http://www.bionavis.com/technology/spr/

SPR: detection

presence of resonance increases absorption and reduces reflectivity.
position of reflection minima very sensitive to refractivity index in position of the evanescent wave.

SPR: how to couple surface plasmon and photon?

- couple light by high-refraction index prism
- lateral modulation of the interface (roughness or structuring)

$$\omega/c\sin \varphi + 2\pi/b = \omega/c \sqrt{rac{\varepsilon_2}{\varepsilon_2 + 1}}$$
(8)

SPR: bio sensors

http://www.bionavis.com/technology/spr/