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Optical properties of solids

L introduction

Intro

m electronics structure of solids.
m electron-photon transitions in solids.
m experimental techniques

m spin-light interactions
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L Electron in periodic potential

LFree electron

Free electron

Free electron’s state is described by Schrodinger equation:
Hy = Ev

R _,
<_2mv + U(r)> ¥ = Ev, where U(r) =0

In case of free electron, the solution of the electron’s wavefunction
is plane wave, ¥ = exp(ik - r), and the corresponding electron's
energy is:

_ h2|k’2

2m

E



Optical properties of solids

LElectron in periodic potential

L Free electron

h2|k‘2
Free electron energy: E = ———
2m
. ) 27
m Relation between wavelength A and wavevector k is A = m

. . . 2 .
m When compared with the classical relation E = £, we obtain
relation between the linear momentum p and the wavevector
k (de Broglie relation):

p = hk.

Comparision with photon:

m free electron with energy 1eV has wavelength 1.23 nm.

m photon with energy 1eV has wavelength 1240 nm
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LBloch theorem

Electron in periodic potential — Bloch theorem

m Let us assume electron’s potential to be periodical:
Uo(r) = Uo(r + T), where T is the lattice vector.

ions X

m We assume one-electron approximation, i.e. interaction with other
electrons (exchange, correlation, Coulomb force) are included as the
additional effective potential acting on electron, Uug(r), with the
same periodicity as Up(r): U(r) = Up(r) + Ueg(r).

m Then, the electron’s state is described by a wavefunction ¢ fulfilling
the Schrodinger equation:

Hy = Ey

( h2v2 U ) =F
“om +U(r) | ¥ = Ev.
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LBloch theorem

Bloch theorem: proof |

m All observables must have the same periodicity as the lattice.
Hence, the electron probability |1|? must fulfill:
[9(r)|? = [1(r + T)[2. Therefore, we can express (r) as:

Y(r+T) = e Mi(r),

where 0(T) is (at this stage arbitrary) phase, as [e(T|2 =1
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LBloch theorem

Bloch theorem: proof |

m For two translations T; and T> we have
U+ To+ To) = T Ty (r) = Ty )

Hence, 6(T1 + T2) = 60(T1) + 6(T2). Hence, the phase 0(T)
has form 6(T) = k- T, as the only this function fulfills the
requirement.
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LBloch theorem

Bloch theorem: proof |

m In final, the electron wavefunction of the periodical potential
writes: 1(r + T) = e*Ty(r). In another words, the
translation by a lattice vector T is equivalent to multiplaying
the wavefunction ¢(r) by a phase factor e’*'T.
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LBloch theorem

Bloch theorem: proof Il
m Let us assume, that the solution of #(r) is in form:
Ui(r) = €™ u(r).

Then, we show that wuk(r) has the same periodicity as the
lattice.

m In point r + T the wavefunction has value:
P+ T) = ™Dy (r+T),
whereas the previous proof provides:
Y(r+T) = e*Ty(r) = ™ Te* Ty (r).
m By comparing both equations, we see:
uk(r) = u(r+T),

i.e. uk(r) has the same periodicity as the lattice.
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L Bloch theorem

Wavefunction of the periodic potential is (Bloch theorem):

P(r) = exp(ik - r)uk(r),

m u(r) has equal periodicity as the lattice, uk(r) = uk(r + T).

m exp(ik - r) corresponds to free-electron wave (free-electron
propagation). It implies that the electron propagates through the
crystal like a free (pseudo-free) particle.

Periodic part of Bloch function w(x)

1 = exp(ikz)ug(x)
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U (r) = exp(ik - r)uk(r),

m Function u(r) modulates this free-electron-like wave so that the
amplitude oscillates periodically form one cell to the next. It does
not affect the basic character of 1, which is that of a traveling
wave. In reality the electron is not free, (it interacts with the lattice,
electrons etc), but its propagation has features of a free electron
propagation.

m As the electron behaves like a wave with wavevector k, it has a

deBroglie wavelength and thus a corresponding momentum p = k.
Periodic part of Bloch function w(z)

1 = exp(ikx)ug(x)
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L Fourier transform

1D Fourier transform
Fourier transform:

F ex —/kx dx
\/277 / p )
Inverse Fourier transform'
f(x) / k) exp(ikx)dk
~ Vor

Build function f(x) as a
sum of harmonic func-
tions exp(ikx) having
amplitudes F (k).




Optical properties of solids

L Electron in periodic potential

L Fourier transform

1D Fourier transform
Fourier transform:

\ﬁ / x) exp(—ikx)dx

Inverse Fourier transform:

f(x) \ﬁ/ F (k) exp(ikx)dk

Example: sound in real (time) and reciprocal (frequency) space:
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Examples of Fourier transforms

f{tl:%/K Pyt | i) — /" Flt)e=ivtdt Basic properties of 1D Fourier
2 i transformations
Falt e
- o f(t) F(w):FT(f(t))
n . :
I R Flat EMAY
(a ) |a‘ ( a )
' o £ (t) F*(—w) (conjugation)
— a 1 o awe & f(t - to) F(w)eiftow
o iwgt
AT F(£)e™ Flw —wn)
/\ f(t) cos(wt) % [F(w +wo) + F(w —wo)]
d"f(t PRY.
e e dt(") () F)
: o d”
A AN (=it)"f(2) S

http://www.etc.tuiasi.ro/cin/Downloads/Fourier/Fourier.html
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Dirac o-function

Definition of §-function

6
5(x) = +oo, x=0 a=1/10

0, x#0 =

oo 4

so that / 0(x)dx =1

. > J 2

Properties: 2

/ f(x)d(x — a)dx = f(a) 1

4(x) 0

d(ax) = —=
|al

o 2 1 0 1 2
/ e™dk = 2md(x)
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L Fourier transform

Fourier series

Let us have periodic function f(x) with period T, f(x) = f(x+L). Then,

o0

f(x) = Z c,,exp(inzﬁTX).

n=—oQ

where

1 (b2 2
Cn :f/ f(x)exp(finlx)dx
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Fourier series and Fourier transformation
Periodic function f(x) = Z Cn exp m—)

n—=—oo

Fourier transform of periodic function f(x) is

\/7/ x) exp(—ikx)d \/L i c,,/iexp [IX nL+k)}

> 2
3 Varcud(k — nT”).

n=—oo

ions X

V(x) F_>

SV N S N N

_3z _ox _z 0 z 2z 3T
a a a a
| Remprocal (G) points

Periodic function becomes a train of d-functions with equidistant spacing.
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Reciprocal space (k-space)

m In the real space, the quantities are expressed as function of
positions, e.g. V/(r), ¢x(r).

m In the reciprocal space, the quantities are expressed as
function of wave-vector k or momentum p = hk.

m Conversion between real and reciprocal space is Fourier
transform, e.g. V(k) = F.T.(V(r)), and
V(r) = inv.F.T.(V(k)).
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LReciprocal space

Reciprocal space (k-space): potential V/(x)
Potential V/(x) of the crystal is periodical. Hence, in the reciprocal
space, V/(k) consists of train (lattice) of d-functions.

ions
V(r)
real space

V(k) l l
reciprocal
S

space
oz 3T
a a

.
- Reciprocal (G) points

_3r 9z _r
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L Reciprocal space

Reciprocal space (k-space): potential V/(x)

ions X

w FT

A S | A -

m the position of §-functions are called reciprocal points or
G-points, forming reciprocal lattice
m the distance between G-points is given only by periodicity of
the function
= any periodic function with equal periodicity is described by ¢
functions at identical G-points
= any periodic property of crystal (potential, electron density) is
expressed at identical G-points
m the shape of the function is given by amplitudes of the
o-functions
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Reciprocal space of 2D periodic function f(r)

m 2-dimensional (2D) periodic
function f(r) = f(r + Ry),
u € Z, where translation
vectors R = uja; + was
form Bravais lattice

X X

Bravais (real) lattice:
g ,

— aj, ap called primitive
vectors
m Fourier transform of f(r)
consists of 2D lattice of
d-functions

— each reciprocal point
denotes position of
o-function Lin-Wei et al, JOSAA 25, 203 (2008)
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L Reciprocal space

Reciprocal space of 2D periodic function f(r)

Bravais (real) lattice:

X x X

m position of reciprocal points
G, are determined by
relation G, - Ry, = 27n,

n € Z, originating from
condition exp(iGm - Ry) =1

m primitive vector of reciprocal

lattice are by, by, providing o e o
ehH @
Gm = miby + mobo . =
o o o o
L ] [ ] L

m similar for 3D reciprocal
lattice

Lin-Wei et al, JOSAA 25, 203 (2008)
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(First) Brillouin zone

Definitions:

Defl: First Brillouin zone is a smallest
possible cell in reciprocal space,
which by translation can form
whole reciprocal space.

Def2: Any point of the reciprocal space k
can be reached from the first

Brillouin zone kinside,lst,Brillouin,zone
added to a translation vector of the
reciprocal lattice G-

k = kinside,lst,BrillouinJone + Gmn-

. . L] -
—_—

R

L] - . -
Brillouin zone
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LBrillouin zone

Properties of Brillouin zone:

m Volume of the (first) Brillouin zone
Vi is inversely proportional to EAN
volume of unit cell of the real
(direct) lattice V;:

27T)N . @ - e @ .

V L . . =
r . . - .|"§:.:.

N - dimension of lattice (2D or 3D) * ailoun zone /-

Vk:(
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Bloch’s 1(r) = uk(r) exp(ik - r) in the reciprocal space
m uk(r) periodical part of Bloch's function

m exp(ik - r) plane wave.

As 1(r) is not periodic in r, (k) is expressed by train of
d-functions shifted by k from the reciprocal points as
F.T.(f(x) exp(ikox))=F(k — ko).

P(r)

real space

¥(k)
reciprocal
space
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LBrillouin zone

Bloch's 9(r) = uk(r) exp(ik - r) in the reC|proca| space.

m as (k) is described by a train of d-functions in the reciprocal
space, it is enough to use k from the 1st Brillouin zone
= reduction to the first Brillouin zone

m wavevector k is a quantum number of the wavefunction:
= k in crystal must be described by integer and hence must be
quantized number
— Pauli principle: No two electrons in an atom/crystal can have
identical all quantum numbers.
= Inside whole crystal, there can be only two electrons at each k
state (spin-up and spin-down)
m So, how many k-states is in the crystal?



Optical properties of solids

LElectrc::n in periodic potential

LBrillouin zone

Note: conservation of momentum p = hk in a crystal

Energy conservation E: due to time-invariant space.
Momentum conservation p: due to translation-invariant space.

Angular momentum conservation L: due to rotation-invariant
space.

m in crystal, there is no invariance of space in both translation
and rotation.

= momentum p = hk of the electron in crystal is not uniquely
defined, and it can behave as having any value
p = i(k + Gm), Gm being any reciprocal vector in the lattice.
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How many k-states is in the crystal?

B Na |

We need to know, how many k-states are available inside whole
(macroscopic) crystal having N unit cells. Hence, boundary
conditions of 1(r) on crystal's interface must be described.

Number of k states in the Brillouin zone:

There is exactly as many allowed k-vector states in the Brillouin
zone as there is number of the unit cells in the crystal.
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Boundary conditions of (r) on interface of the crystal:

| Na |

>

R eeesssssssses

Describe standing waves inside the 1D box,

1st opt: having boundary conditions ¥(x < 0) =
¥(x > Na) = 0, where a is inter-atomic
distance and N is a number of atoms in x-
direction. However, difficult to handle ana-
lytically.

i

n=1

2nd opt: Cyclic (Born — von Karman) boundary conditions
¥(x) = ¥(x + Na). Not a real (physical) boundary conditions,
but accounts correct number of allowed k-states.
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Cyclic boundary conditions:

Let us demonstrate cyclic boundary conditions in x-direction:

P(x) = ¥(x + Na)

For Bloch electron in x-direction:

(x) = “u(x)
¢(X+ Na) — eikNaeikxuk(X) _ eikNaw(X)

And hence: e’kNa — 1, providing kNa = 2mm, m € Z. Hence,

allowed values of k are:

2T m
kpm = ——
a N
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L Number of k-states in the first Brillouin zone

Cyclic boundary conditions:

Ny ax

Due to the boundary conditions, not all values of k-vector are
allowed. Only allowed values of k are (m € Z):

o — 2rm _ _m
T a N N
i.e. the reciprocal translation vector G = 27 /a is divided to N

parts.
To generalize to 3D and general unit cell (general Brillouin zone):

Number of k states in the Brillouin zone:

There is exactly as many allowed k-vector states in the Brillouin
zone as there is number of the unit cells in the crystal.
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Free electron in 2D cubic crystal

Let us assume an electron inside 2D periodic lattice. However, we
assume wavefunction 1) = e’ (which is solution for U(r) = 0),

with energy E = h;f (free electron approximation).

m Assume crystal has N unit cells in 2D crystal, and Z electrons
per unit cell. Hence, whole crystal contains NZ electrons.

m Pauli principle states that on each quantum state (i.e. for
each value of k-vector), the k-stae can contain only two
electrons (with spin-up and spin-down).

m The electrons are filled to the electronic structure starting
from smaller energies, i.e. in our case from smaller k-vectors.
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Reduction to the Brillouin zone

In case of electron with k-vector outside Brillouin zone, the
k-vector can be shifted back to the first Brillouin zone,

k = kinside,lst,Brillouinlone + Gmn

: _ Rk
In free electron model, electron energy is £ = 5.

Hence shift of k to the Brillouin zone provides electron bands (with
principal quantum number n > 0).

reduced zone extended zone repeated zone
d=1 reduced zone d=1 extended zone d=1 repeated zone
40 £ E 40 £ E 40 & E
g R 3 mZ S
: 1 Tak 1 FaF 3
10 & 3 wf 3 wef 3
-2 -1 0o 1 =z -2 -1 0o 1 =z -2 -1 0o 1 =z
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m 2D volume of the Brillouin zone V| = 47r2/Vr contains 2N
electrons’ k-states (times 2 because of two spins).

m The electron energy depends solely on |k|, the area of
constant energy is a sphere in the reciprocal space.

m When all available electrons fill the
k-spaces, a circle is formed up to the
highest occupied energy (Fermi level),
with k-vector kr. s ky

m This 2D circle occupies reciprocal 1y
space Vi = mk2, providing
mkZ/(NZ) = (47%/V,)/(2N). Hence,

the Fermi level of this circle has radius: sueswimk<s,
This figure should be 2D!

2
kF—\/ "~z —NZ £ 2 k2
F 2m
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Free electron in 2D cubic crystal
Z=4

What states are occupied and what are
filled?

square length: k, = 27/a=6.28/a

ke — /27 Z/() = 5.01/a
ke /(ko/2) = 1.60 > /2 (B

1st Brill. zone 2nd Brill. zone 3rd Brill. zone 4th Brill. zone

S Y I R Sl B szm | ' <>

AN L x X m ST
1 r1 1 T, Ezmm 2 2 2

e
7

http://phycomp.technion.ac.il/~nika/fermi_surfaces.html

a



http://phycomp.technion.ac.il/~nika/fermi_surfaces.html
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Band structure of 2D electrons in cubic crystal

3.0

25

2.0

05

0.0
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Free electron in 3D

m In the volume of the Brillouin zone Vj = 873/ V, there is 2N
electrons’ k-states.

m The electron energy depends solely on |k|, the area of
constant energy is a sphere in the reciprocal space.

m When all NZ available electrons fill
the k-spaces, they form a sphere called
Fermi sphere (terminated by Fermi
surface), with maximal k-vector kr.

m This sphere occupies reciprocal space
Vi = %ka—, providing
S7kE/(NZ) = (87%/V,)/(2N).
Hence, the Fermi sphere has radius:

371'2 3 37‘(‘2
ke = ¢ = =Nz
F V, Vv
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LFree electron states
Aluminium (fcc):
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LDensity of states

Density of states (DOS):

Density of states (DOS): number of electron’s states per energy
interval:

_awz)
dE
For free elecctron, EfF = % where kg = \3/%

Hence: 32
NZ Vv <2mE>

32 \ 2

Therefore, Density of states g(E) of free
electron is:

d(NZ vV o/2m\3/?
0= = 5 (7)) VE

DOS « VE



Optical properties of solids

L Electron in periodic potential

LDensity of states

=

Si: complicated
DOS, contains gap
at Fermi level.

X

Y PP

™

Al Al: nearly free elec-

trons DOS ~ VE.

Ag: d electrons
are burried and the
only electrons on
the Fermi level are
s-electrons.

Mlebaaaccrsamnamancaas 7

_‘
o
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Complete energy levels in solids:

Core states:

Electrons in the spherical
potential of the nucleus
(bounded, not shared,
electrons).

Approximately, they correspond
to electrons in filled electronic
shells.

They provide sharp energies.

Quantum numbers without
spin-orbit coupling: n, /,
m=1l,s, s,

Quantum numbers with
spin-orbit coupling: n, I, s, j, j,

Free electrons in vacuum

DT Macuum level
&) Exited states
=
% = Fermi level
B
g
wn
[
o
)
2 2s
S
O
1s
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Complete energy levels in solids:

Occupied states:

Electrons shared through the crystal.
They approximately correspond to
valence electrons of the atoms.
They form energy bands.

Fermi level:

Energy level separating occupied and
unoccupied states.

Excited states:

Empty energy levels above Fermi
level. Electrons can be excited to
those states and then they relax
back.

Vacuum level:

Overcoming this barrier, electrons
do not feel periodical potential of
the crystal and become free.

Free electrons in vacuum Vacuum level

Exited states

ND!

Fermi Ievelf ‘

Shared electrons

2s

Core el ectrons

1s
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Fermi surface

As electrons fill the reciprocal space up to Ef, they create a
boundary in the reciprocal space between filled and empty
k-spaces. This boundary is called Fermi surface.
Fermi surface in 2D, cubic (blue line):
1st Brill. zone 2nd Brill. zone 3rd Brill. zone 4th Brill. zone
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LElectron in periodic potential

L Fermi surface

Fermi surface in 3D

Real atoms:
K(bcc) [Ar] 4s? Al (fcc) [Ne] 3s? 3pt

s

http://www.phys.ufl.edu/fermisurface/


http://www.phys.ufl.edu/fermisurface/
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Example of some elements’ Fermi surfaces.

Li

\J

Na

The Fermi Surface Database

(click icons)

[Rb
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LElectron in periodic potential

L Fermi surface

Example of some elements’ Fermi surfaces.

Feupr Coup Niup
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L Electron in periodic potential

L Fermi surface

Comments on Fermi surface

m Fermi surface is formed by free (unbounded or easily excited)
electrons. Such electrons are provides e.g. electrical or
thermal conductivity.

m Hence, the metal can be defined as 'material having Fermi
surface’.

m Semiconductors and insulators do not have Fermi surfaces,
because they do not have free electrons on Fermi level. In this
case, one Brillouin zone is completely full and next Brillouin
zone is completely empty.
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LElectrc::n in periodic potential

L Fermi surface

Basic classification of materials (according to DOS):
metal semiconductor /isolator
no gap at Fermi level gap at Fermi level
Fermi surface no Fermi surface (filled BZ)

220 L .
180 | |
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LElectrc::n in periodic potential

L Fermi surface

Basic classification of materials (according to DOS):

ferromagnet

different DQOS for up
and down electrons
Fe(bcc): [Ar]4s23d®

%a

I L
v o a
AB/SUOIOBI3 “OU

Dirac cone
Fermi surface is a
dot.

(graphene,  Nobel
price 2010)

(a) E(k) (b) E(k)

k Kk Ky

Energy E-¢,[eV]

half-metal

gap only for spin
down (or only for
spin up)

Co,FeSi

Do oA hbowaao

DOS p(E) [eV]
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Free electronsin vacuum Vacuum level

Sketch of the electronic @ -------------------FFTm--EET
Exited states

structure in solids:

Core electrons: localized
electrons on each atoms.

Shared electrons: form
occupied band structure.

Excited electrons: ex-
cited to excited states of
the crystal, still interacting
wit (bonded to) the crystal.
lonized electrons: excited
above vacuum level and
hence they are free (no in-
teraction with the crystal).

Shared e ectrons

2s

Core eectrons

1s
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L Photon absorption

Photon spectroscopies (absorption) I:

The optical properties are based on probability of photon
absorption:

material’s absorption of photons i.e. imaginary part of
permittivity 3(g) [determined usually by electric-dipole
approximations].

real part of permittivity R(¢) by Kramers-Kronig relations
Then, the optical properties are then described by complex
numbers, e.g. complex permittivity € or complex refraction
index N or complex conductivity o, e = N2 =1+ io/w
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LOptical properties of solids

LPhoton absorption
Photon spectroscopies (absorption) II:

Different photon energy ranges excites and probes different part of
the electronic structure of the matter.

dc conductivity, THz=far-infrared: energy about kT ~ 30 meV.
Excites vicinity of the Fermi surface (charge, spin and
heat transfer and their combinations).

extended visible light (mid-infrared — far-UV): ~ 30meV - 100eV.
Both starting and final states are in the band
structure (both not simply identified) (reflectometry,
ellipsometry, MOKE).

X-ray: ~ 120eV — 120 keV. Excites deep core levels of the

atoms. XAS (X-ray absorption spectroscopy).
Starting levels are from core levels and hence they are
easy to identify.
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L Fermi golden rule

Time dependent perturbation theory |

(according Solid State Physics, M. S. Dresselhaus, http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf)

Unperturbated Hamiltonian with eigenstates
Ho |n) = Ep |n)

is perturbated by time-dependent perturbation H'(t)
H = Ho+ H'(t)

and we search for solutiuon of Schrodinger equation

m% ) = (Ho + H'(£)) &)

The solution is searched as a sum of Hp eigenstates weighted by
time-dependent expansion coefficients a,(t)

[4(2)) =D _ an(t) |n) exp(—iEqt/h)

n


http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf
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L Fermi golden rule

Time dependent perturbation theory I

[()) =) an(t) |n) exp(—iEnt/h)

n

By substituting |¢(t)) to Schr. Eq., multiplying from left by (k|
and using ortonormality (k|n) = 0,k

== Z an(t) (k|H'(£)|n) exp(iwint)

which is exact solution up-to now and where Awy, = Ex — E,.
Assuming (i) H'(t) is small (ii) at t = 0, quantum state is only |/},
i.e. a,(O) = 1, a,,;,g/(O) =0.

. 1 .

ag(t) = = (k|H'(t)|/) exp(iwkt)

which can be integrated to obtain ax(t) = [, dt'ax(t').
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L Fermi golden rule

Time dependent perturbation theory Il

Assuming, that hamiltonian perturbation is harmonic,
H'(t) = H'(0) exp(Liwt):
1 t
(1) = = (KIH )l / At exp(i(wi - w)t)
0

_ i , exp(i(wy tw)t) —1
- o SR Z )

with amplitude of ax(t) being (using identity
|exp(ix) — 1|? = 4sin?(x/2))

aa(t)2 = LKLHO)IN) 2 4sin((wys £ w)t/2)
2 (Wi £ w)?
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L Fermi golden rule

Time dependent perturbation theory IV

KIH/(0)|1) |2 4sin®((wi £ w)t/2) =i
w2 (Wi £w)?

a(t)P = 1

m |ax(w)|? has peak at w = wy, i.e. at
resonance

m the peak width is about 27/t

m however, Heisenberg uncertainity principle states

AEAt ~ 27h, ie. Awyy ~ T

m Hence, the time of transition probability is so small, that the
uncertainity in energy (frequency) covers about full width of the
peak.
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L Fermi golden rule

Fermi golden rule |
We introduce probability of transition from state |/) to state |k)
per time W). Second, as in solid state, there is large number of
similar k-states in the solids, we sum-up also transition
probabilities, where the transition happens at or nearby k-state.
Hence, we sum transition probability over all possible k-states
accesible due to uncertainity principle. Number of states in the

vicinity of energy wy; is given by (joint) density of states
dN = p(Ex) dE = p(Exr) hdwy.

1 h
we = [ amjai(®F =% [ dualan(e) o)

integrated over energies (frequencies).
The only quickly changing function is the peak, sinc(x), and hence

4h sin?((wy & w)t/2)

W, kIH'|1Y p(E
= g (KH1) plEw) [ s 25
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L Fermi golden rule

Fermi golden rule Il

Using

0 i

/ sm2xdx .
oo X

X = (wk/ iw)t/Q

we finally get (Fermi golden rule = transition probability per time
per volume)

27
Wik = Wi = f\ (k|H'(0)|1) 1> p(Exr)
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L Fermi golden rule

Perturbation Hamiltonian for oscillating electromagnetic
field |

m A: vector potential, B=V x A E=-V¢ — %A

m ¢ can be zero for electromagnetic wave (charge is zero and
gauge transformation can be selected in such a way)

m Then, electromagnetic field can be written as
A(t) = A(0) exp(—iwt), E = iwA

m Then, perturbated Hamiltonian is (introducing non-zero
vector potential A by substitution p — p — eA)

1
H:H0+H’:%(p—eA)2+e¢—u-B+U(r)
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L Fermi golden rule

Perturbation Hamiltonian for oscillating electromagnetic
field Il

1 2
%(p—eA) +ep—p-B+ U(r)

Two perturbations appeares:

H=Hy+H =

m H' = —Sp- A: el-mag field 'moves’ electron charge. It
provides so called electric dipolar transitions. Dominant term
for interband and intraband optical transitions, i.e. photon
absorption process for dc, optical and X-ray frequency range.

mH=—-u-B= %U - B: el-mag field 'moves’ electron spin. It
providing so called magnetic dipole transitions. It governs
effects changing spin direction e.g. creation of magnon, FMR
excitation, absorption in NMR, where electric dipole

transitions are not allowed.
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L Fermi golden rule

Electric-dipole transitions:

m The largest contribution to the photon absorption is given by
so-called electric-dipole transitions valid for A > a.

m Hence, whole vast energy range can be described by so-called
Kubo formula, determining conductivity (absorption) for a
given photon energy .

As k-vector is conserved during optical transitions from conductive
to valence band, the joint density of states is

perli) = <25 /B A(E(K) ~ EufK) — )

Substituting this to Fermi golden rule, and assuring the transition
goes from occupied to unoccupied state, we obtain Kubo formula
expressing light absorption in matter.
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L Kubo formula

Kubo formula
Conductivity (propertional to probability of photon absorption)

S(exx) ~ R(oxx) ~
Z[f FOER] x [[{ilps | F)1> + [(ilp—|F)[?] x 6(Ef — Ei — huw)

where

m (i|, |f): initial and final states, respectively.

m pi = px tipy, px = ihd/Ox, momentum operator

m terms in the Kubo formula means:
m summation over all initial and final states, (i| and |f)
m f(Ef), f(E;): electron occupancy of initial and final states.
m |{i|p+|f)|?: probability of the photon to be absorbed between

(i] and |f) states for circularly left/right polarized light

(non-zero only when electric-dipole selection rules are fulfilled).
m 0(Er — E; — hw) assures energy conservation.
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LKubo formula

Selection rules of electric-dipole transitions:
Electric dipole transition is allowed when following conditions are fulfilled:
Energy: Ef — E; = hw (absorbed photon energy is difference
between energies of the final and initial electron states)

Momentum: fw/c = 0 (photon has negligible momentum compared to
one of the electron. l.e. the momentum of the electron is
kept between initial and final state (vertical transitions)).

Electron spin : As = 0 (probability photon's spin=1 is transferred to
electron’s spin is tiny = electron’s spin is preserved for
electric dipole transitions)

Orbital momentum: A/ = +1 (photon has angular |101)
momentum 1h). Therefore only et 1
S <> p, p <> d etc. transitions are Am=-1]| _
allowed. \}A

Orbital momentum along z-axis (magnetic number): [21D)

Am = £1 (determines if photon is ! 12-11)
circularly right or left polarized).
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L Kubo formula

Kramers-Kroning relations |

0) Kramers-Kroning relations relates real and imaginary of | Im 0

the complex function, e.g. of the optical spectra of the

permittivity.

Purely based on mathematical relation between real and Re W
imaginary part of 'polite’ functions (Cauchy integral). W

1) mathematics: Cauchy residual theorem states (for any

function without poles in integration area):

x(«')
w —w
2) for function x(w’)/(w" — w), we create pole in point w’ = w. Hence
Cauchy integral becomes (assuming the integral over 'arc’ is zero, i.e.

function x is enough small at infinity):

7{ x(w') du! = 737 X(C_ulzu dw' — imx(w) = 0.

dw' =0

w —w w!

|.e. function in point ¥v(w) equals to the integral over whole w’!
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L Kubo formula

Kramers-Kroning relations Il

1 7 x(w’
x(w) = iTrP/ w’(—c)u duw'.

3) Amplitude of x(t) is real. Further, x(w)=F.T.(x(t)). Hence
X(w) = x*(—w). Hence, relation between R(x) and I(x) is

Rearranging:

Rx(e)) = 2pf SN g
0

S(x(w)) = - 22pf TX)
0

/
duw’
2

Which are famous Kramers-Kronig relations.
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L Kubo formula

Kramers-Kroning relations Il

m Absorption line (i.e. &(g)) is
described by Lorenzian function.
Kramers-Kronig then
determines its real part.

Example: Lorenzian function
T

m notice finite shift in R(¢) even
for w < wq. It corresponds to
e.g. situation when light
propagating in glass is not not T — =S
absored, however, its : _// b(.
propagation speed is smaller to W v
¢ due to absorption at higher
frequencies.
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L Kubo formula

Kramers-Kroning relations 1V

Comment on Kramers-Kronig relations:
m In Kubo formula, R(g) can be equally obtained by introducing
finite linewidth I, i.e. by replacing J-function by finete-width
Lorenzian function:

1

B —E—he) = e T
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LContril::utions to optical permittivity

€, Measured

---Drude
Gaussian
Lorentz 1
\ ---Lorentz 2
. . H A ---Tauc-Lorentz
m $(e) means light absorption. 5 by --Gaussian + T-L
R \ ---Sum of Oscillators

Contributions to optical permittivity
Optical permittivity e: € = R(e) + iJ(e)

m R(e) and J(e) are related by
Kramers-Kronig (KK) relations.

m the light absorption consist of several
contributions; their sum provides resulting
light absorption

€, Measured

25
. ---Drude

vaccum permittivity: €, =1 ool 4 Eaus?a?
A orentz

Drude term (free electron). ~-Lorentz 2

---Tauc-Lorentz
---Gaussian + T-L
- E(e0)

---Sum of Oscillators|

Lorentz term (resonance line).
Tauc-Lorentz (semiconductor gap).
many others

Example: 10F T T =
Heusler 5+ ©]
compound 0
CogFeAly 5Si Sk 4 -
2 0.5210.5 10 b ] 100 1 > 3 2 5
Balke et al 1 1 Photon Energy [eV]
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LContributions to optical permittivity

Lorentz oscillator (Lorentz contribution)

photon absorption due to bound states Nom 7 Aemintied
A? T Ao
ELorentz G T B N + T
wd —w? —ilw .t ‘o -
+@+ Tk T
= ++

w: Photon energy = -

Fig. 4 Polarization of the eleciranic cloud dl e rnol E-field

wo: Energy distance between the energy =
levels (i.e. resonance energy)

A: Amplitude (probability of the
absorption)

. Width of the line (sharpness of the
absorption) (i.e. full width at half

maxima: FWHM)
Can be determined also from damped oscilator model:

d? d
md—t}; + mrd% + mwiy = E cos(wt)

where material’s polarization is P = g E = yNgq.
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Free electron contribution: Drude contribution

A2
€Drude = T
—w? —ilw
m photon absorption due to free
electrons (i.e. due to conductivity)

m Drude is like Lorenz, for wg = 0

m amplitude A also called plasma

. P |t S S
frequency wp; at this frequency i
R(eprude) =0 for eo =1
m when Drude is expressed in
permittivity, lim, 0 S(eprude) = 00 T i -

- ol H 7000

m driving equation
2y dy - :

m—= + ml— = E cos(wt) —

dt? dt o
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LContributions to optical permittivity

Tauc-Lorentz contribution

Tauc-Lorentz contribution describes optical properties of
(amorphous) semiconducor at photon energies near the gap:

2
W — Wea 1
etL = A < w p) H(w = wgap)S (wg w2 — iwr>

10

g
i.e. Tauc-Lorentz is E
expressed by multiplication § . [ﬂ
of Lorentz function, =
parabolic function, and I
Heaviside step function 0 ]

5000 1040 15000 20000 2500y SO
“Wavemnnmber [1/cm]
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L Contributions to optical permittivity

With more careful calculations, one can win;

with less, one cannot.

How much less chance of victory has one who makes no
calculations at all!

Sun Tzu: The Art of War
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Spin-orbit coupling: Dirac equation

Spin-orbit coupling term couples spin of the electron o = 2S/h
with movement of the electron mv = p — eA in presence of
electrical field E.

eh

The maximal coupling is obtained when all three componets are
perpendicular each other.

The spin-orbit term can be determined from solution of electron
state in relativistic case. The equation describing relativistic
electron is called Dirac equation, relativistic analogue of
Schrodinger equation.
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L Dirac equation

Dirac equation: introduction |

m Relativity describes nature at high speeds, v ~ c.

m Relativity unites time and space, described by Lorentz
transformation

X — vt - =
/ /

X = — = — ¢
2 2
|4 |4

1 = 1 =

= relativistic quantum theory must do the same. Schrodinger
equation does not fulfils this, as it it has first derivative in
time and second in space.
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L Dirac equation

Dirac equation: introduction Il

Relativistic theory expresses total energy of the particle as:

W2 = p?c® + mic* (1)
Quantum operator substitution: p — p = —ihV,
W — W = ihd/0t. It follows in Klein-Gordon equation
1 02 mic®
2 0
(V T 202 >¢(r t) = (2)

This Eq. reduces to Eq. (1) for plane wave (free particle)

Y(r, t) = expli(r - p — Wt)/h]. This condition limits following
solutions to particles with spin 1/2, as space-time wavefunction is
symmetric, and hence spin-part must be antisymmetric.
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Dirac equation: derivation |

let as ASSUME, the Dirac equation will have first derivative in
time. Then, it must be also in first derivative in space.

wave function is superposition of N base wavefunctions
w(n t) = E ¢n(rv t)
must fulfil Klein-Gordon equation, Eq. (2)

General expression of condition 1:

8, Op
i w Z Z ;/V,,8¢ _ﬁZBlnwn (3)

w=x,y,z n=1
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Dirac equation: derivation Il

When expressed in matrix form (¢ is column vector, af‘n is
3 x N x N matrix, 8;,is N x N matrix)

1 9vY(r, ~ me
! zwért D _ & Ve 1) — =B ) (4)

Substituting quantum operators p — —ihV, we get Dirac equation

mawg(; D _ Fip(r,6) = (c& - b+ Fme2)i(n, ) (5)

where matrices &, 8 are unknown.
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Dirac equation: non-relativistic limit

When Dirac equation is solved up to order 1/c?, we get

;1 (h 2
H=— <V = eA(r)> + V(r) + mc? Unrelativistic Hamiltonian

2m \ i
h
- %U -B Zeeman term
m
eh . . .
- ma “[Ex (p—eA)] Spin — orbit coupling
1
- W(p — eA)4 Mass of electron increases with speed
m3c
h%e _, )
+ WV V(r) Darwin term

Darwin term: electron is not a point particle, but spread in volume
of size of Compton length ~ //mc.
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Spin-orbit coupling: discussion |

Spin-orbit coupling term can be sepaarted into two components:

eh eh ey
“amea? [Ex(poeAl =g [Explt oo [Ex Al

= Hsoc + Hame

AME=Angular magneto-electric

m The electric field E = —EVV . 2A
e ot
m canonical momentum p = —ihV (conjugate variable of

. . OH |

position; O —pbi, I Xi)

m kinetical momentum mv = p — eA (defines kinetic energy and
represents velocity)
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Hsoc in spherical potential, static case

eh
fsoc = =gz

Spherical potential V(r) =

providing:

1dV 1 14V
h 1d 1dVs L—es.L

H v ) -
SOC = am2e2 dr o-(rxp)= 2m2c? r dr

where spin angular momentum S = %0' and orbital angular

momentum L=r x p
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L Understanding spin-orbit coupling

Understanding spin-orbit coupling: spherical potential

m spin of the electron creates electron's magnetic
moment (in SI)

e e h 2up
Hs =S = Tl T e =TS
where pg = % is Bohr magneton.

m orbital moment (around atomic core) creates
magnetic moment too

B T —ugl

KL= 2m h

(or can be understood as creating magnetic field
Hefr due to current created by electron orbital)

m the mutual static energy of spin and orbital is
then Eso approx = —Its - Befr or just electrostatic
interaction between both magnetic dipoles.

i

‘Copyrignt @ Addison Wesley Longman, Inc.
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Understanding spin-orbit coupling: Lorentz transformation

Electromagnetic field appears different as observing frame is
moved. For example, if a charge is moving in the laboratory frame
(unprimed), we observe both electric and magnetic fields. In the
frame of the moving charge (primed), only electric field is observed
and the current and magnetic field are absent. Lorentz
transformation of el.-mag. fields between both frames is:

Ei=E B =B
,  (E+vxB), (B—v/c®> xE)|
L \/7\/2 [1_ w2
T2 T2
where L and || are relative to the direction of the velocity v.
l.e. for small speeds, E‘ =E+v x B and B'=B — % xE

B =
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L Understanding spin-orbit coupling

Understanding spin-orbit coupling: Lorentz transformation

For electron flying by speed v through static electric field E, in its

frame the electron feels magnetic field B’ = —= x E, which
torques/acts on its spin. The Hamiltonian is given by Zeeman
interaction
Hso.e~p = —ps - B (6)
eh 1
eh
= 5,229 (Exp) (8)

which is twice larger compared to Hsoc derived from Dirac
equation. Missing half is due to Thomas precession (in case of
electron orbiting nucleus, it is the precession of the electron rest
frame as it orbits around the nucleus).
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L Understanding spin-orbit coupling

Lorentz transformation: extrinsic spin Hall effect
In laboratory frame, spin-Hall effect provides scattering of electrons
on charged impurity along to electron spin.
In electron frame, it can be understood as charge current from
impurities, providing magnetic field, according which the electron
spin aligns.

~ /f’ |

Spin current

Figure 1. The Spin Hall Effect. An electrical current induces spin accumulation at
the lateral boundaries of the sample. In a cylindrical wire the spins wind around
the surface, like the lines of the magnetic field produced by the current.
However the value of the spin polarization is much greater than the (usually
negligible) equilibrium spin polarization in this magnetic field.
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Examples of spin-orbit effects

eh

Various SOC effects are obtained by different origins of A and
1 d
Examples:
m SOC in spherical potential (already discussed)

m optical spin pumping: excitation of electrons with selective
spins in GaAs

m E has contribution originating from interface of two materials:
— Rasha effect

m A has contribution of incident light: coupling between angular
momentum of light and electron spin (optomagnetic field)
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Example: splitting of atomic levels by SOC

Splitting of atomic levels due to spin-orbit coupling (without
magnetic field). The energy levels corresponds to different values
of the total angular momentum J

J=L+S
J.J=(L+S) - (L+S)=L-L+S-S+2(L-S)
JU+1)=1I(l+1)+s(s+1)+2(L-S)

<L~S>Z%U(j+l)—/(/+1)—s(s+l)]

For p states, /| =1, s =1/2 and j = 3/2 (4 electrons) or 1/2 (2
electrons). So, due to spin-orbit coupling (without magnetic field),
the energy level of electron splits into two levels.

Thus, the spin-orbit interaction does not lift all the degeneracy for
atomic states. To lift this additional degeneracy it is necessary to
apply a magnetic field.
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Optical spin orientation

Electron excitation by circularly polarized beam in GaAs excites

electrons with selective spins.

m; -y 2 ;

m for w between E, and t : _fz'k_ HF‘L_T s

E; + Aso, only the ; \ ||

light and heavy hole ' S .

subband are excited. E, | Ve )| Ee

Then for zinc-bland =ho | XX ', )

structure (e.g. GaAs), : | TN N I

the spin-polarization is Vol D AmS e\ - i — VB

P, =—1/2. WV T e

_ o e W / Y §-0.34 eV

m Light polarization can ' 5 B w \

also be used to detect & I 4

spin polarization in 18~ x

4

semiconductors.
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Rashba effect |

Rashba Hamiltonian: electric field E is
created on interface, E || 2:

HRashba = a(a X p) Z

a: Rasba coupling
p: electron’s momentum
o: spin direction (Pauli matrix vector) o

The Rashba effect is a momentum dependent splitting of spin bands in
two-dimensional condensed matter systems (heterostructures and surface
states). It originates from concurrent appearance of

m spin-orbit coupling

m asymmetry of the potential in the direction 2 perpendicular to the
two-dimensional plane, creating electric field E = E,2 = —fVV
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Rashba effect Il

z

E (arb. units)

DOS (arb. units)

http://www.sps.ch/fr/articles/progresses/
m For p = p, and Hrashba = Ol(O' X p) 2 = HRashba = —QpPx0y
m splitting of energy states according to p and o directions.
m max. splitting when z, p and o are perpendicular each other.

m when crystal lacks inversion symmetry, internal electric field E is
created.


http://www.sps.ch/fr/articles/progresses/

Optical properties of solids

LSpin»orbit coupling

LE><a|mples of spin-orbit effects

Optomagnetic field |

according to: Paillard, Proc. of SPIE 9931, 99312E-1 (2016)

e’h
HA/\/[E = —WU . [E X A]

Assume electric field as plane wave

Ecxt = —%—? =R (Eoexp[i(k - r — wt)])
providing vector potential as A = §R(—£E0 expli(k - r — wt)])
m Electric field acting on electron has two contributions,
E = Eint + Ecxt, Eint = —1/eVV provided by crystal and Eqy
provided by incoming el.-mag. field.
m term [E;y X A] vanishes as Ej, varies much quicker compared
to A (due to a < \).
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LSpin»orbit coupling

LE><a|mples of spin-orbit effects

Optomagnetic field Il

2
e“h . N
HAME = —md . %[IEO X EO] = —uUB- BOM
KB
Bowv = —mlahelicity
m = —upo: electron magnetic moment, up = eh/(2m) Bohr

magneton

B Opelicity = Jt[iu X u]: helicity of beam, where u is beam
polarization, u = Ey/E

m [ = SLEZ : beam intensity

m direction of By is determined by helicity of the incident
beam O helicity

Note: although By contributes to magnetization torque by
induced light, it is not probably the dominanting term.
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L Avanescent wave tech niques

L Attenuated total reflection

Techniques using evanescent light wave

Attenuated total reflection & Surface plasmon polariton
Reflection and total reflection

Air
Critical angle Total |nte_rna|
reflection
n2
n
Water

Snell law:

VELSIn g1 = /2 sin 2

Critical angle:

. €2
sin e = -
1
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L Avanescent wave tech niques

L Attenuated total reflection

Light reflection on the interface

Maxwell equations

. X
solution as plane wave e
¥

E = Evexp(i(k - v — wt)) !
medium 1

boundary conditions at the r=0mmmm e Y e
interface: medium 2

E, H fields: continuous
transverse (x, y) components
D, B fields: continuous normal
(z) components

for total reflection, solution of
transverse wave is in form so
called evanescent wave,
non-propagating in z-direction
E = Eexp(—k,z)
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LAvanescent wave techniques

L Attenuated total reflection

Light reflection on the interface

incident
wave

transmitted wave transmitted wave

s-polarized light: p-polarized light:
_n cos(6,)—n, cos(6)) P cos(6.)—n, cos(6,)
* n.cos(8)+n, cos(6) " n,cos(8,) +n, cos(6))
_ 2n, cos(6,) o 2n, cos(6;)
* n, cos(6;)+n, cos(6,) ' n,cos(8)) +n, cos(6))

And, for both polarizations:  #;sin(8,) = n,sin(6,)

http://www.ece.rice.edu/~daniel/262/pdf/lecturel4.pdf


http://www.ece.rice.edu/~daniel/262/pdf/lecture14.pdf
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L Avanescent wave tech niques

L Attenuated total reflection

Light reflection on the interface

Reflection on glass/air

100 T T T T

80

60

40

reflectivity (%)

20

ol ’
o 10 20 30 40 50 60 70 80 S0
angle of incidence (°)
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L Attenuated total reflection

Total reflection

Critical angle:

. €2 ny
SINYe =4/ — = —
€1 n

Evanescent wave:

E = E;exp(—2z/d — iwt)
Penetration depth:

5 1

Example: glass(ny)/water(ny)

inteerface; ny > no

" kov/(msingn)? — ()

\ Y silica
N .\ 4 Standing
SN Electro-
\ \ magnetic
N Wave
W\
n, : x\\ S >
S = - e
n, N n, - LET Electric Field
©, = sin”(n,/n,) E 200 Sensor
Wat =
E,= Eoexp(-z/dp) ater g = Molecules
e _},,— e Evanescent Wave
* 2TnVsin’@-(n,/n,)* » 400
a v

http://www.tirftechnologies.com/principles.php



http://www.tirftechnologies.com/principles.php
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L Avanescent wave tech niques

L Attenuated total reflection

Attenuated total reflectance (ATR)

B probes sample by evanescent
wave

= sensitive to surface of the
sample

m sample modifies evanescent
wave — partial absorption or
transmission of light in sample
— total reflection is decreased
(attenuated).

Sampl
ample | st Panatration depth
~
~
ATRerystal ; '

Incident THz beam Reflected THz beam

To detector

IR-light aut Internal reflection element IR-light in
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L Avanescent wave tech niques

L Attenuated total reflection

Attenuated total reflectance (ATR): gap effect

Gap thickness (refractivity of Absorption in gap (gap thickness
gap=1): 960 nm):

1| 9ap thickness

—— 10 nm

gap refractive index

— n=15
=== n"=15-005i
------ n"=15-01i
0 z . . o
0 20 40 60 80 0 10 20 30 40 50 60 70 80 90

angle of incidence [°] angle of incidence [ °]
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

Surface plasmon (electrical excitation providing two
adjacent evanescent waves in the vicinity of the interface)

Electric field in the vicinity of the interface: 2|\ g <<
. Dielectric /\ /\ /\ /\
E = Ep exp[i(kxx + kzz — wt)] S
Metal
where

Surface Plas Res
k2 = kf + k22 =€ (CU/C)2 _ €kg (9) urface Plasmon Resonance

2y

At the interface of two materials ¢; and e5: pop, |
. . %o B
(2) kx continuous over the interface; s

kx1 = kx2 (10) // K

(b) D, and E, continuous over the interface >0 ni<o
Note! There is only a single p-polarized (TM) surface plasmon !

kZ]./€1 — k22/62 (11) http://www.physics.uwo.ca/~smittler/



http://www.physics.uwo.ca/~smittler/
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

Surface plasmon II: dispersion relation

e From Egs.(9-11) follows ' /
dispersion relation for surface -
plasmon:

ke = ko <€162 ) (12)

€1+ €

where kg = w/c.

e Surface plasmon appears only
for p-polarized (TM) wave, as
this mode has normal (z)
component of D = eeyE field.

0 05 i 15 2 25 3
kg (arbitrary units)
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

Surface plasmon Ill: example

Example: assuming ¢; = 1 (air) N
and e =1— :—’E (metal as free . // o
electron model of an electron gas N / .
= Drude, neglecting absorption). 0 /
Then / b=t ()"
o

ky = . /

Hybridization between photon 0 I INaar Aaaar aaans]

K (arbitrary units)

(w = cko) and plasmon

wsp = wp/\@-



Optical properties of solids

L Avanescent wave tech niques

LSurfa\ce plasmon resonance

Surface plasmon resonance (SPR) |

e Resonance between incident wave photon and surface plasmon.
Resonance means that both (pseudo)-particles have equal w and

ki = Kyine = R(kusp).
eDescription of incident wave from material €; under angle ¢:

kx7inc = g\/aSin ® (14)
C

e Description of surface plasmon:

o ﬂ €1€2
kX’SP_ (c) <61+62>’ (15)

Condition for existence of the resonance: (ep) < —e; (i.e. R(e2) must
be negative; fulfilled by coinage metals, Au, Ag, Cu). Here, €; is assumed
to be non-absorbing material (i.e. $(e1) = 0).
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

Surface plasmon resonance (SPR) Il

Surface plasmons are very Laser lght g

: Photodetector
. . . source """/‘"‘
sensitive to slight perturbations \ |
0}

within the skin depth = surface

plasmons are often used to probe soldcoonedgiss —» [RRRERRRRERR *— * "
_ d 1o i ,Wﬁi g
tiny changes of refraction index

near the interface (extreme
sensitive detector of small
changes of the refraction index).
= Readout of many bio-sensors
based on this detection
technique.

http://www.bionavis.com/technology/spr/


http://www.bionavis.com/technology/spr/
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LAvanescent wave techniques

L Surface plasmon resonance

SPR: detection |

T T
oak

pakmear flm
clay ilm

e presence of resonance
increases absorption
and reduces reflectivity.
e position of reflection
minima very sensitive
to refractivity index in
position of the
evanescent wave.

Reflectivity, %

Argle, dapess
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

SPR: detection Il

e presence of resonance
increases absorption

and reduces reflectivity.
e position of reflection 550 am
minima very sensitive
to refractivity index in
position of the 7 womm

evanescent wave. 0 2 3 40 S0 o0
Angle/deg.

A=400 nm

A=450 nm

A=750 nm
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

SPR: how to couple surface plasmon and photon?

m couple light by Air Gold
high-refraction index prism

m lateral modulation of the
interface (roughness or
structuring)

GaAs substrate

€2

ea+1
(16)

w/csinp+2n/b=w/c
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L Avanescent wave tech niques

LSurfa\ce plasmon resonance

SPR: bio sensors

>
Glass slide
/ Laser light source Photodetector
¥
Prism Au-coating (or other)
Functjonal coating
Elastomer —— )L 4"“ I
SLIDE SENSOR \
BULK b Sample

b analyte
-

Liquid or gas

http://www.bionavis.com/technology/spr/


http://www.bionavis.com/technology/spr/
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LSpin»orbit interaction of light

Spin-orbit interaction of light

K.Y. Bliokh, Nature Photon. 9, 796 (2015)
Similar to spin-orbit coupling of electron, there is spin-orbit
coupling also for photon (for light beam).
m Spin-orbit interaction of electron: connect spin wavefunction
and space wavefunction
m Spin orbit coupling of photon: connects beam trajectory and
its polarization state (also know as optical spin-Hall effect).
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LSpin—orbit interaction of light

Angular momenta of light |

Spin angular momentum S:
degree of circular polarization (helicity)
o=(-1,1)

k

S:O'*:O'E
p

k

Extrinsic orbital angular momentum L*;
determined by the trajectory of the beam R S
LeXt — R % p

Transverse shift
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LSpin—orbit interaction of light

Angular momenta of light Il

Intrinsic angular momentum L™t:
helical phase front: phase of the beam
depends on position inside beam,
approximately

E(r,z,¢) =~ Eo(r,z)explilp], where r,
z, ¢ are coordinates in cylindrical
coordinates.

e K
Lt=1, ez
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LSpin»orbit interaction of light
Optical spin Hall effect |

Interactions between those three
angular momenta of light represents
spin-orbit coupling of light.

Example: optical spin Hall effect:
The light beam on reflection displaces
(shifts) according to the beam helicity
o. Consequence of total angular
momentum conservation:

J=S+L*=S+Rxp

o
o

adjusting coordinates that incident
beam has R = 0 and hence L®* =0
S-S ~R xp

K.Y. Bliokh, Nature Photon. 9, 796 (2015)

y-splitting (nm)
IS
S

N
S

0 20 40 60 80
Angle of incidence, 8 (°)
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Optical spin Hall effect Il

J =S+ L% = const.
displacement of beam due to
light helicity inside the glass
cylinder with gradient of
refraction index.

p ko p?

p=vn(R) R=P_7PXP

(overdot denotes derivation
according to the trajectory)

Bliokh Nature Photon. 2, 748 (2008)

3

Shift |R+ - R‘| (um)

0 S — T T 1
-6 -4 -2 0 2 4 6
Turns of the helix

o
m
B
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Spin trasnfer by evanescent wave

Transverse spin

Electrical field of the evanescent

wave (propagation along y, recall
E-k=0):

Electric (magnetic) field

0 0
k= |k E= |i(—K/k)E;
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Profile of electric field

Electric (magnetic) field

Profiles of electric field in paraxial beam and evanescent beam,
providing longitudinal and transverse spin angular momentum.
— i b o o

r erse angular mon
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LSpin—orbit interaction of light

Selection of evanescent wave propagation

As spin of the evanescent wave is given by propagation of spinwave, the
polarization (helicity) of incoming beam determines propagation direction
of the evanescent wave.

b Left OMME" 11 Intensity (a.u.)

XDO NNV
| [t [ —

1 Intensity (a.u.)
A

Scatterer

0 45 90 135 180 225 270 315 360
Quarter waveplate orientation (°)

"Remarkably, the universal character of spin-direction locking in
evanescent waves can be associated with the quantum spin-Hall effect of
photons, which makes it an optical counterpart of the quantum spin-Hall
effect of electrons in topological insulators”
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LSpin»orbit interaction of light

LPolariton
Polariton |
Polariton: coupling between photon and Mid-IR-THz
excitation of the matter. Here we discuss E
coupling with optical phonon. PP
d%u 5 el ot
m-- + wTom = eE cos(wt) /o
[ wsckive

ol .
S =ck/ye,

m u: amplitude of optical phonon

m E: driving electrical field at w LSS

P eE/m / g

== - / y
2 _ 2
Ne — wgp—w V7
s
2
Qp &

e(Ww) =0+ — 5
LL)-,—O — W Mills, Rep. Prog. Phys. 37, 817 (1974)
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LSpin—orbit interaction of light

LPolariton
Polariton Il
Q2
_ P
Polariton dispersion: e(w) = €0 + w%,_o — w2

/"‘r..: =k,
;/ / ‘
__/ / Alancklie,
sl — o A—

—

="d(0)

2j—e(c0) £

W

'
(3
-

™~
b

N -

™,
~,
~
Relative dielectric function €(w)

i3

.

-1
s
T

o

w

Note: longitudinal mode frequency w; o defined b); e(wro) =0
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in-orbit interaction of light

LPolariton

Polariton example: CoTiSb
Infrared (IR) reflectivity:

m One dominant and one satellite peaks  ———mr T, 1.0
— originating from atomic vibrations ’ ]
(phonons). E 0.8
m Described by weak Drude and three E 0.8
sharp Lorenzians. ]
m Phonon energies at -point agrees 407
perfectly well with exp. (=30 meV). 3 06 o
35 _CoTle ] optical ] 05 8
%30 E N 1k E ] ©
£ L —~— 404
& ¢ 1F ] ]
B20F : 403
g 15k — 3 F acoustic ] ]
LA 3
§ ok 3 E IR 17 0.2
£ st/ ] ] b, o0% 00 UnS s ) g
or X K r L 0.0 05 1400'01 0.1 1

Dh ~t i mommers, T A
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LSpin»orbit interaction of light

LPolariton

Excitons

m Excition is electron-hole pair binded by
Coulomb’s electrostatic attraction.

m This is very similar to a hydrogen
atom, like an electron orbiting around
a proton. However, the binding energy
is much lower, due to small effective
masses of the excited electron and
hole. Eexciton ~ 1/n%, n €N

k 5]

Incigent photon

’
Conduction band ~
(effective mass m,)

Valence band
(effective mass my,)

ko —
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LSpin—orbit interaction of light
LPolariton

Excitons in ZnO

m ZnO: large gap direct

E T T T T T
semiconductor (3.3eV @ RT) or ]
m Strong excitonic binding energy SF ]
~60 meV TE ]
m excitons add sharp absorptions 0 2'

to optical spectra

15 [= 2] L T T T

'_<\ AT =] osF * Elc

< = Ellc i

2 F E Lcfit

b ----Ellcfit
3 1k 4 3
i‘i‘ ﬂﬁn’:\ﬁ#‘?fpu . )
t 3.1 3.2 3.3 3.4 35
Energy (eV)
AR UM T TAiA 5 HPFK T T Jellison PRB 58, 3586 (1998)

Schmidt-Grund, Thin Solid Films 455, 500 (2004)



Optical properties of solids

LSpin»orbit interaction of light
LPolariton

Optics of multilayers |
Total optical response of multilayer
described by reflection matrix:

Reflection matrix is the only ) optical
. . redlity odel
quantity accessible for sample m
investigations by optical means.
Roughness of the interfaces is

included by: nt3
substrate substrate

usually described by effective
sub-layers.

their optical properties
described by e.g. effective-
medium-approximation
(EMA).
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LSpin»orbit interaction of light

LPolariton

Optics of multilayers |

Total optical response of multilayer described by reflection matrix:

R — [rss rps:|
I'sp T'pp
Different quantities can be investigated on reflection:
m reflectivity (unpolarized light): | = 1/2(|rss|? + |rpp|?)

m reflectivity of s-polarized light: Is = |rss|?

= magneto-optical Kerr s-effect: &5 = s + ies = 2

m ellipsometry: p = tan Wexp(—iA) = 2

Iss

m magnetic linear dichroism for s-wave (M in-plane):
MLD = [rss(M || 5)|? = |rss(M || p)I?
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LSpin»orbit interaction of light

LPolariton

Light in multilayer system

1) Solution of Maxwell equations in homogeneous (but generally
anisotropic) material:

2 w?
k E—k(k-E):?E-E
general solution are four waves, two propagating in two directions
('up’, 'down’), each having different polarization.
2) on surfaces, boundary conditions are applied (transversal
components of E and H fields are continuous over the interface)
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in-orbit interaction of light

LPolariton

Optical properties of mixtures

spherical inclusions of materials 1 and 2:

Eeff — Eh €1 — €n 1 f) Eo2 — €Ep " /////’
= — )= - |
Eeff + 2ep €1+ 2¢gp €2 + 2¢ep o
Material "A”; filling factor f
. ) L. [ Material "B”; filling factor 1-f
cefr . effective medium permittivity Maxwell Gamett theory Bruggeman theory
ep : host medium permittivity Y @ N
1 — f : volume fraction of the first, second material L
Ratio of volumes ‘Probability f of being "A”
determines f mbfgg’y 1-f of

€1, €» : permittivities of the first, second material

Maxwell-Garnett : e, = 1 (host medium is one of the constituent
media)

Lorentz-Lorenz : e, =1 (host medium is air)

Bruggeman : (also known as EMA=Effective medium approximation)
eh = Eeff: host medium is effective mediuam itself
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LSpin—orbit interaction of light

LPolariton

Ellipsometry |

Ellipsometry measures complex ratio of diagonal reflection coefficients:
) r

p=tanVexp(—iA) = 22

lss
m V, A: so-called ellipsometric angles ¥V, A

m W expresses ratio of reflected s- and p-waves

m A expresses phase difference of reflected s- and p- waves.

p-plane

Elliptically polarised

Linearly polarised

Sample
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LSpin»orbit interaction of light

LPolariton

Ellipsometry Il

m experimental setup provides spectra of W, A

m those spectra are fitted into optical model, where various parameters
can be free parameters in the fit (but not all at the same fit):
m optical constants of a given layer (can be further described by
a various functions)
m layer thicknesses
m interface roughnesses

m Example of fit to spectra of ¥V, A

=

o

o
W
[\

T T T T
Cr(3nm)/CFS(47nm)/MgO |

=70deg 31r
exp. ]
optical model

T T T T T
Cr(3nm)/CFS(47nm)/MgO
=70deg 4
= exp.
optical model

=

@

o
T

=

N

S
T

130 -

Delta [deg]
Ny
o
T
Psi [deg]
3
T
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LSpin—orbit interaction of light
LX—ray spectroscopy

X-ray absorption spectroscopy (XAS):

Absorption P

JLoeta8

-—2pi=32)
L,edge
B —2p (=12

Flwron Encrgy

Energy

L,edge o

Abs orpiios

hy

http://news.softpedia.com



http://news.softpedia.com
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LSpin—orbit interaction of light

Lx- ray spectroscopy

X-rays can pick materials apart: layer-by-layer

X-ray Cu Fe Ni
2-0_|| ||||I||I||I|III|II III_ L_I [

Normalized absorption

Fe Ni
ST RN RN NE RN P PR AT e

650 700 750 BOO 850 900 950 1000

=
o0

Photon energy (eV)

https://wwu-ssrl.slac.stanford.edu/stohr/xmcd.htm


https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm
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LSpin—orbit interaction of light

LX—ray spectroscopy

Experimental setup of XAS

X-ray absorption spectroscopy techniques

- ~1.0
(a) Transmission =

0.9}
0.8
0.7

0.6

Transmitted intensity /

05
760 780 800 820

Electron yield 1,/1,

780 800 820
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LSpin»orbit interaction of light

LX—ray spectroscopy

X-ray absorption spectroscopy (XAS):

XAS is extremely sensitive to the chemical state each element, as each
element have its own characteristic binding energies. XAS measurements
can distinguish the form in which the element crystallizes (for example
one can distinguish diamond and graphite, which both entirely consist of
C), and can also distinguish between different sites of the same element.

15000 ; - ; + -

10000 o0

Counts
2
(o]

Tntensity [arb. units]

5000 -

porous Si

PET clean SINW ¢ S
e-Si N
g
0

380 285 200 295 300 305 310 B e s 90 o oy
Excitation Energy [eV] Emission Energy [eV]

http://beamteam.usask.ca/


http://beamteam.usask.ca/
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LX—ray spectroscopy

-orbit interaction of light

XAS on Fe: S T
A (@)
(b) 3dholg — 6 |L,
k => £ I
DOS %’ N
® "l J
[} —
L, I+s E B
L, I-s ! - F_S_J Co | Ni Cu
Stohr,  Siegmann,  Magnetism: C 1 L I L I L I 1 | |
From fundamentals to nanoscale 700 750 800 850 900 950
dynamics Photon energy (eV)

Starting L2, L3 edge (i.e. 2p/2, 2p3/?, respectively):

Ixas, p—d ~ Np

Np: number of free d-states. p — s has small contribution.
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LX—ray spectroscopy

XMCD: X-ray Magnetic circular dichroism:

Circular Dichroism: different absorption for circularly left and right
light polarization.

| 4 g Fe metal
: ¢ S — —
v f 5 L i
3d I a T 3 -’ \
band {vti °E; § 8 :
é 5 B —l*’ Tor¢
3 L =
w - 2 ‘_ ‘
173 4
=}
© -
@
Negative| |Positive § | /kA
helicity helicity - L -’ -
o
‘ < 0E I | [
2p,, o4 Ko 69 710 730
2py, —oo— Photon energy (eV)

Different absorbed intensity for opposite magnetization
orientations.
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LX—ray spectroscopy

Origin of X-ray magnetic circular dichroism

Band model Atomic model
m 9 E ﬁ

3

~1eV )
2

L, i,

1625‘%) q=+1 ‘ ‘ 25% q=+1

K 9 ks o 9 =

XMCD spectrum | — I |37‘5 % q=-1 75% q=-1
L3 L2 | f 2p3/2

=

Difference intensity

Photon energy
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LX—ray spectroscopy

XMCD: Detailes p — d transition

Polarization dependent p to d(t) transition intensities

} (*;#‘ dxl ¥ 7Yy ¥ r'y
Vol % i 5 " s, =
o g ! L +1/2
h oS T
g ® dXZ i T‘ l T | T | Tonly
¢ v TT] [LTT] TTIT \ t1f] [T
}\ \-\*— I ‘\ \\_\ [ 1 O\ 1\ -Jl-\ 1 ‘_‘ O
18 6 26 _6 69 16 3| [3_.4 3 _12_8 6
‘1‘8 6° °6. 6 93" |"3" °3%2 %6
T T
A |
+3/2 l | ‘
P32 +1/2
112 L [
-3/2 |
pijsge 02 ‘ J
12 4
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LX—ray spectroscopy

XMCD: sum rules:
(a) d-Orbital occupation  (b) Spin moment  (c) Orbital moment
R

\ E N, holes N

q DOS-- E,---- a5 - - - - - -~

lNﬁlL;' 1.)/C)

my=pg(-A + 23>/Ct

o= 2414 +B>/3§E



https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm
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LSpin»orbit interaction of light

LX—ray spectroscopy

Advantages of X-ray spectroscopies:

element selective.

quantitative determination of material characterization (e.g.
magnetic moment, orbital moment).

can be both interface or bulk sensitive.
can provide excellent lateral resolution (~ 15nm).

can provide excellent time resolution (~ 100 fs).

Disadvantages:

due to width of the initial (core) line, the energy resolution is
limited to ~1eV.

synchrotron needed.
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LSpin»orbit interaction of light

LPhotoemission spectroscopy (photon in — electron out)

Photoemission spectroscopy (PES)

- Photon in, electron out.
- Based on the Vacuum [level
photoelectric effect
(electrons kick out by
incoming photon).

- Also called Photoelectron
spectroscopy.

- Probes density of states
below Fermi level.

Core electrons  Shared electrons
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LPhotoemission spectroscopy (photon in — electron out)

Photoemission spectroscopy (PES or XPS)

* *aka ESCA
hoto-electron Spectroscopy
Electron Spectrum
0000
Cu XPS
3 2p3 Survey Spectrum
5 of Pure Copper
3 (Cu)
g E
g Cu
HE 2p1
=
L Cu Cu Auger
Al 2s electrons cu Cu
| 3s 3p
- L
) g 77 T T &
Binding Energy of Electrons (eV)

Usual Analysis
Area and Depth

Top 20 atomic layers
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LSpin»orbit interaction of light

LPhotoemission spectroscopy (photon in — electron out)

Photoemission spectroscopy (PES)

m photon in (known energy),
electron out (energy
measured)

m elemental composition of
the surface (top 1-10 nm

photon source energy analyser

usually). \\
~ |
m detect all elements except o M /,/
H and He.
m chemical or electronic e /
state of each element in / . / UV - Ut High Vacuum
F (p <1077 mbar ) J
the surface.

m mapping of elemental
composition across the
surface.
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LSpin—orbit interaction of light

L Photoemission spectroscopy (photon in — electron out)

Photoemission spectroscopy principle
Ephoton = Eionized electron T+ Ebinding
= when ionizing core-levels, outgoing dependence electron yield
on detected electron kinetic energy Ecjectron provides sharp peaks.
=> when exciting valence band, valence band occupancy can be

found.
probing core levels probing valence bands by HAXPES
N Peak ID ‘Atomic % BE (eV)
F1s 687.19 K]
s 1 : e 1

c1
70000f
50000f

30000f

1000

1

& A
y. :
%

(a) MgO(2nm) Ietb) MgO(20n Y
0

Relative intensity [/ fmax

(c) bulk

1 o
45 -0 -5 0-15 -10 5 0-15 -10 -5 O
Energy E- ¢r [eV]
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LPhotoemission spectroscopy (photon in — electron out)

Photoemission spectroscopy (PES)

m Ultraviolet photoemission spectroscopy (UPS)
- vacuum UV radiation (photon energy of E = 10-45 eV) to
examine valence levels.
- when varied detection angles, one can map out energy in the
reciprocal space.

m X-ray photoemission spectroscopy (XPS)
- soft x-rays (E = 200-2000 eV) to examine down to
core-levels.
also known as Electron Spectroscopy for Chemical Analysis
(ESCA).

m Hard X-ray photoemission spectroscopy (HAXPES, HX-PES):
- using hard X-ray to excite down to deep core levels.
- bulk sensitive
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LPhotoemission spectroscopy (photon in — electron out)

Angle resolved photoemission spectroscopy (ARPES):

Both energy and direction of the ionized electrons are measured.

Momentum conservation:

Pionized electron — pphoton *+ Pbound electron T hK

as pphoton ~ 0, hence Pionized electron — Pbound electron + hK.
m hence, the ionized electron has the same momentum as the
original bound electron (plus #K due to lattice periodicity).
m hence, by measuring the excitation angle with respect to

crystallographic direction, one can determine the dispersion
relation E(k) of the electrons inside the matter.
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LSpin—orbit interaction of light

L Photoemission spectroscopy (photon in — electron out)

Angle resolved photoemission spectroscopy (ARPES)

Electronic structure of graphite Fermi surface of CuzAu(111)

'K azimuth "M azimuth

K M K I K M K T M r 3] r

binding energy (V)
binding energy (e\}
5 El

k'

oA

http://www.tp2.uni-erlangen.de
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LSpin—orbit interaction of light

L inverse photoelectron spectroscopy (IPES)

Inverse photoelectron spectroscopy (IPES)
Electron in, photon out. Q ,,,,,,,,,

- low incidence electron
energy Eyin (~ 20eV).
— those electrons couple
to unoccupied states Eii,
above Fermi level

X-ray intensit; (EhPNIO L el_ecnfun
— when electrons decays Y S -
to lower states, radiates
phOtOﬂ. unoccupied
states
- when photons pass
narrow-band filter (i.e. SN | | W

only one energy passes),
unoccupied DOS mea-
sured.

http://rsl.eng.usf.edu #

Ep

occupied
states

electron
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LInverse photoelectron spectroscopy (IPES)

Inverse photoelectron spectroscopy (IPES): properties

m as small electron energy, only surface is tested.
m can provide k-resolution, as ARPES.

m can provide spin-resolution.

Example of IPES on Si(100) surface

KJ/Si(001) HH-T3 site

2,ozq - i 7 \ AN _
N
LENRA

'wr§§‘\ K,LT" %TX 7

http://el.physik.uni-dortmund.de
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in-orbit interaction of light

LAuger and characteristic X-ray

Auger electron spectroscopy (AES) and characteristic X-ray

m electron in (~ 3 -10keV).
m inner shell of an atom is ionized.

m the vacancy is filled by an electron
from an outer shell.

B the released energy is emitted as
(characteristic) X-ray or is
transferred by electromagnetic
interaction to a 3rd electron. If it
gets sufficient energy it can leave
the atom as Auger electron.

m energy of both radiations is
determined by the energy levels of
the atom and makes analysis of
the composition possible.

...(characteristic) X-rays

OeVv
3p M, 4 eV
3s M, 15 eV
Zp Ly 768 eV

(3)
2pL, 772eV
3
2sL, ® 122 eV
X-ray
(4a) i
Excitation: M U]
elektrons
(3..10 ke\/)& xv
1s K 1566 eV
@ @ (E for Al

http://www.ifw-dresden.de/institutes /ikm /organisation /dep-31/methods/auger-electron-spectroscopy-aes
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LSpin»orbit interaction of light

LAuger and characteristic X-ray

Characteristic X-ray radiation
Characteristic X-ray radiation is used to generate X-ray radiation in
X-ray tubes. (most common X-ray source used e.g. in medical
U

u,

X-rays or X-ray diffractometers).

Ey (eV)
Ke "o
Intensity (1) My 5 (3)
Mogl®p — @&
high accelerating voltage M, @s) 122
L

La (2pgs) sa3
Lp 2y} 4 9s2
Ly (23) I 1087

Ka1 Koz Kg

low accelerating voltage l l l
Kosp — T T T g9m

Wavelength (3)
Radiation consists of characteristic single-energy radiation (denoted K .
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LSpin—orbit interaction of light

LAuger and characteristic X-ray

Auger electron spectroscopy:

m Only H and He do not emit Auger
electrons (The Auger process).

m measured Auger electron spectra.

= element and chemical states
identification.

Auger electrons (~1 nm)
Secondary electrons (~100 nm)
m element detect limit about < 1%.

Inelastically

m depth information 0.5-5nm (surface
backscattered electrons(~1um)

technique).

. . . . Characteristic X-rays (~10 um)
m in combination with electron

microscopy, local analysis (points,
areas, lines) are possible. Continuum X-rays (~10 & m)
Fluorescent X-rays (~10 um)

m Disadvantage: high energy and
current density of the primary electron
beam, producing many defects.

http://www.ifw-dresden.de/institutes/ikm /organisation/dep-31/methods/auger-electron-spectroscopy-aes
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LSpin»orbit interaction of light
LAuger and characteristic X-ray

Examples of Auger spectra

Rh(111) monolayer of NiO on Pd

£ dNGE (@)
dN{edE fa.u)

Pd (o]

L L , L L 00 200 300 400 500 60 700 800 900
Kinetic energy (eV)

Electron Energy (eV)

http://surface-science.uni-graz.at/main_frame/techniques/aes.htm
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LSpin»orbit interaction of light

LAuger and characteristic X-ray
Processes related with electron-in

backscattered
photo- ) electrons: Auger
electron  primary electrons elastic inelastic electron

NN S A
7

photo-
effect

characteristic

x-ray secondary

elfctron

Auger
effect

secondary

electron
Brems

strahlung

fluorescence

effect
®  |onization
AN 50lid state excitation (phonon, plasmon, exciton etc.)
WMWY Characteristic photon  hy,
WVWWW  Characteristic photon  hv,
AN\

Bremsstrahlung hvg
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LSpin—orbit interaction of light

LAuger and characteristic X-ray

Processes related with photon-in

Unoccupied
State

Occupied
state

h\/% / hv%
—o—C— Core level ———
(a) NEXAFS (b) XPS (c) XES (d) UPS

XAS X-ray absorption spectroscopy
XMCD X-ray magnetic circular dichroism
NEXAFS near edge absorption fine structure
PES, XPS photoemission spectroscopy, photoelectron spectroscopy
UPS ultraviolet absorption spectroscopy
XES, XFS X-ray emission spectroscopy, X-ray fluorescence spectroscopy
HAXPES hard X-ray absorption photoemission spectroscopy

http://www.theochem.kth.se/research/xspectra/index.html
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LSpin—orbit interaction of light

LAuger and characteristic X-ray

NASA's Mars Exploration Rover Spirit

Nwdgation cameras

Mars Exploration Rover

The Rovers are both designed to search for water using a variety of
instruments, including a mini-Thermal Emission Spectrometer, a
Mossbauer Spectrometer, and Alpha Particle X-ray Spectrometer.
http://rst.gsfc.nasa.gov/Sect19/Sect19-13a.html
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Alpha Particle X-Ray Spectrometer (APXS) on Rover

“... will expose the material to alpha particles and X-rays emitted during the
radioactive decay of the element curium.” “When X-rays and alpha particles interact
with atoms in the surface material, they knock electrons out of their orbits, producing
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LSpin—orbit interaction of light

LAuger and characteristic X-ray

NASA's Mars Exploration Rover Spirit

Alpha-Particle-X-ray-Spactromeler Rosulls Misssbauer Spectrum of Clovis (200 - 220K)
L L L L L L L . -
E g @ Hematite
°: ef 3 After grinding vith 3 . i
i it the Rack Abrasion Raol 54 @ Silicate
2 § 3 ™ Goethite
——Clovis oulerop :
H Humphrey basall rock 4 . Nanophase-oxide
s H 7 (Goethite 2)
z background ?
g z
& =
g £
2 01 s g
2 [
5 =1
5
8
0014 L

T T T T T T T T
2000 4000 600D 8OO0 10DDO 12000 14000 16000 d

Enargy oV Ve]o%ity —
“On Earth, Goethite - a very common mineral associate with Limonite -
is found as an alteration product or as a direct precipitate in the so-called
"bog iron” deposits, which result from a reducing, water-rich swampy
environment. That form of Goethite is usually produced with the aid of
bacteria but can also form inorganically. The mode of origin of the Clovis
Goethite is still "up for grabs” but the presence of this mineral suggests a
significant role for water in Mars' past.”
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L Synchrotron

X-ray beam generation in synchrotrons

Undulator: Wiggler:

small electron oscillation ampli- large electron oscillation ampli-
tude, narrow energy band emis- tude, wide energy band emission,
sion, smaller light intensity. higher light intensity

e- Source
- Electron trajectory determines light polarization.

- Photon energy can be from IR to hard X-ray. Mostly used is
X-ray.

- Quick X-ray pulses (up to 100fs ) are possible.
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LSpin—orbit interaction of light

L Synchrotron

Synchrotron radiation source:

National Synchrotron Light source, USA Grenoble
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LMagneto»optical effect
Magneto-optical Kerr effect:

m Change of optical properties (polarization state, reflectivity)
by presence/change of magnetization of the sample.

One can separate usage of magneto-optical (MO) effects to:
m MO as a metrology tool to study magnetism:
m MO magnetometry (study of magnetization reversal).
MO microscopy (study of domain wall and its propagation).
Magnetization dynamic studies (precession etc.)
MO as a tool for ultrafast magnetization processes.

m MO spectroscopy to study optical properties of the MO effect:

m Magnetism is understand as a perturbation, reducing symmetry
of the solids and hence introducing new optical features.

m Study of spin-orbit interaction.

m Interaction between light and magnetism — a very fundamental
interaction.
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L Magneto-optical effect

LE><a|mples of magneto-optical effects

MO effect I: Magneto-optical Kerr effect (MOKE):

m For example: incident s-polarized wave.

m Magnetized sample
= hence: also p-polarized wave appears on the reflection.
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LMagneto»optical effect

LE><amp|es of magneto-optical effects

Kerr and Faraday magneto-optical effect:

Due to historical reasons, there are different names for MO effects
measured in reflection and transmission.

Kerr effect: Faraday effect:
m measured in reflection. m measured in transmission.
m discovered 1876. m discovered 1845.

IS,
Il
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LMagneto»optical effect

LE><a|mples of magneto-optical effects

MO effect Il: transversal MOKE:

m Incident p-polarized wave.

m Magnetization in-plane and perpendicular to the incident
plane (so-called transversal magnetization direction).

m Change of the reflected p-polarized intensity due to
magnetization in the sample (in this particular case, on
change in polarization of the reflected light appears).

¢ Lo
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L Magneto-optical effect

LE><amp|es of magneto-optical effects
MO effect Ill: Magnetic dichroism and birefringence:

Dichroism: different damping of both light's eigen-modes.

Birefringence: different propagation speed of both light’s
eigen-modes.

MCDI, -1 =
Magnetic circular dichroism (MCD): s
m Different absorption for
circularly left and right
polarized light.

m MCD linear in M.

m MOKE and MCD has the same E
microscopic origin, they just E2
manifest in different ways.

M

MCD = Imle, - €] = Im[o,, (w)]
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L Magneto-optical effect

LE><amp|es of magneto-optical effects

MO effect IV: Voigt effect:
MLD=I -1, =

m Discovered 1899. i

m Different absorption or phase shift for
linear polarization parallel and
perpendicular with the
magnetization.

m Quadratic in M (~ M?).

m Also called Cotton-Mouton effect or
linear magnetic MLD xImlg, —,] xRe[o, -0, |
dichroism/birefringence (LMD/LMB)

m The same microscopic origin as
quadratic MOKE (QMOKE) (more
precisely, Voigt effect is simplest case
of QMOKE).

El
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L Magneto-optical effect

LE><a|mples of magneto-optical effects

Classification of the MO effects:

Even / odd effect in magnetization.
Measured in transmission / reflection.
Detected change of intensity / polarization.

[
[
[
m Probing light is linearly / circularly polarized.

VAR

=

3
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L Magneto-optical effect

L Examples of magneto-optical effects

Family of magneto-optical effects:

\ Detected: Polariz. Detected: Intensity

Linear in M

Quadratic in M

| Detected: Polariz. Detected: Intensity

Linear in M

Quadratic in M

[...] denotes nomenclature in research of conductivity.
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L Magneto-optical effect

LOrigin of magneto-optical effects

Origin of MO effect (microscopical?:

Electronic structure of the FM materia
[microscopic description]
3
Permittivity tensor of each layer
[phenomenological description]

Exx Exy Exz

€= |Eyx Eyy Eyz
Ezx  Ezy Ezz

4 \ /
Reflectivity matrix of whole sample

[maximal accessible optical information]

Measured Kerr effect: d; = 2=
¥
Signal measured by MO setup
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L Magneto-optical effect
LOrigin of magneto-optical effects

MOKE configurations and permittivity tensor:

Polar MOKE Longitudinal MOKE Transversal MOKE

ax/Row

Polarization induced by magnetization: APy, = ¢1(M x E)

g -—e1my O €0 0 emy, €0 0 0
g1my €0 0 0 €0 0 0 €0 —e1my
0 0 €0 —eymy, 0 €0 0 e1my €0

CDs/p(mZ) ¢s/p(my) Arpp(my)
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LOrigin of magneto-optical effects

MO effects and permittivity tensors

[Note: tensors on this slide are only illustrative.]
= Linear MOKE: PMOKE, LMOKE, TMOKE, MCD, MCB, [Hall]

€0 —E&1My, g1my
g1my €0 —e1my MO signal ~ e1(m;)
L—&1Mmy E1My €0
= Quadratic MOKE:
€0 61(m,-mj) 0
e1(m;m;) €0 0 MO signal ~ e1(m;my;)
L 0 0 €0
= Voigt effect: MLD, MLD, [AMR]
Exox(mimj) 0 0 MO signal ~
0 eyy(mimyj) 0 ) — T
0 0 ez (mim)) Vezz(mim;) — ey (mim;)
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L Magneto-optical effect

LOrigin of magneto-optical effects

Magneto-optical spectroscopy microscopic picture

spin-down e spinup e absorption
[101) [101) spectrum
—_— — I
Fermi ... AT A ~
level Am=-1 Am=-1
Am=-1 A circularly left
_ polarized light
\ﬂ )
C
g w
iil2 £ [
o !| exchange & <
wy 211) interaction _—
spin-qrbit Ay
coupling Vv

Simplified electronic structure for one point of the k-space.
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LOrigin of magneto-optical effects

No spin-orbit coupling assumed:

= no MOKE effect

spin-down e spinup e absorption
[10)) [101) spectrum
Fermi L 2. Pl oL bt
level Am=11| _ Am=-1
Am=-1 U circularly left
- polarized light
N\
dr j21m
[2-1T) -
ex 3 <é
ci i [2-11) dl exchange = g
ur [211) interaction
spin-_ortﬂt hv
coupling=0 ¥




Optical properties of solids
LMagneto»optical effect

LOrigin of magneto-optical effects

No exchange assumed:

= no MOKE effect
= both SO coupling and exchange must be present to have MOKE.

spin-down e spin up e absorption
[101) [101) spectrum
—1 7Y - —_
Fermi ... SIS AT b
level Am=- Am=-1
Am=-1 Nl circularly left
i polarized light
[2-11) 210 | |
o - dld1 of ™ g
w 211) |2-11) UJI L.u
spin-orbit Aexz() )
coupling exchange
interaction ¥ hv
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LOrigin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

spin-down e spin-up e

absorption
[101) [1071) spectrum
Ferm:  %..PL AN N | i o®
level i E.M >
® i E||M >
> o —
dr /
op b - \Aex S
Lle E.-.-.. .m ,eXChan_ge M hizszznnes
spin-orbit coupling interaction kE
of the second order — Av
v

QMOKE arises from different absorptions for E L M and E||M.
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L Magneto-optical effect

LOrigin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

spin-down e spin-up e
[100) [101)
Femiz A PL L PLT ]
level ELM
E.M Ell MI >
® ElIM |
a1
o i Agy
Wi T \d!| exchange M
spin-orbit coupling interaction k-

of the second order —
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LOrigin of magneto-optical effects

Condutivity (and hence absorption of the photon)

Kubo formula: conductivity determination.

§)‘E[UXX]NZP‘(E FOERX (i p+|£) P+ (i] p— | )] < 6(Er— Ej—hw)

S[osy] ~ Z[f —F(ER)x[(ilp+ )12~ [(ilp-|F) [P < 6(Er — Ei—hw)

where
m (i|, |f): initial and final states, respectively.
B pi = px +ip,, px = ihd/Ox, momentum operator
m terms in the Kubo formula means:
m summation over all initial and final states, (/| and |f).
m (Ef), f(E;): electron occupancy of initial and final states.
m |{i|p+|f)|?: probability of the photon to be absorbed between
(i| and |f) states for circularly left/right polarized light
(non-zero only when electric-dipole selection rules are fulfilled).
m §(Ef — E; — Iw) assures energy conservation.
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LUse of magneto-optical effects

MOKE advantages and disadvantages:

m spatial resolution limited by wavelength limit (~300nm for visible
light) — but sub-wavelength resolution demonstrated.

m investigation on distance, light can be transported nearby sample by

a fibre.

no need of vacuum or special sample preparation.

depth resolution about 30nm.

measurements do not influence sample magnetization.

high time resolution.

depth selectivity.

vectorial resolution (possible to determine all magnetization

components).

m robust, cheap technique.

BUT:
m spatial resolution limited by wavelength limit.
m easy to overcome Kerr signal by spurious noise (S/N ratio problem).
m not direct information about the electronic structure or magnetic
moments etc.
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L Magneto-optical effect

L Use of magneto-optical effects

Extensions of MOKE:
m XMCD, XMLD for high photon energy.

X
P 2
m Non-linear magneto-optics v
= MO second harmonic generation. 20

m Inverse Faraday effect (ultrafast optical switching).
i T

m Observation of spin accumulation in GaAs (spin Hall effect).

Position (um)

g 8 8
PN AR R RSSO v o i -, |
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