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Introduction

Intro

electronics structure of solids.

electron-photon transitions in solids.

experimental techniques

spin-light interactions
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Free electron

Free electron

Free electron’s state is described by Schrödinger equation:

Hψ = Eψ(
− ~2

2m
∇2 + U(r)

)
ψ = Eψ, where U(r) = 0

In case of free electron, the solution of the electron’s wavefunction
is plane wave, ψ = exp(ik · r), and the corresponding electron’s
energy is:

E =
~2|k|2

2m
.
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Free electron

Free electron energy: E =
~2|k|2

2m

Relation between wavelength λ and wavevector k is λ =
2π

|k| .

When compared with the classical relation E = p2

2m , we obtain
relation between the linear momentum p and the wavevector
k (de Broglie relation):

p = ~k.

Comparision with photon:

free electron with energy 1 eV has wavelength 1.23 nm.

photon with energy 1 eV has wavelength 1240 nm
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Bloch theorem

Electron in periodic potential – Bloch theorem

Let us assume electron’s potential to be periodical:
U0(r) = U0(r + T), where T is the lattice vector.

V(x)

xions

We assume one-electron approximation, i.e. interaction with other
electrons (exchange, correlation, Coulomb force) are included as the
additional effective potential acting on electron, Ueff(r), with the
same periodicity as U0(r): U(r) = U0(r) + Ueff(r).

Then, the electron’s state is described by a wavefunction ψ fulfilling
the Schrödinger equation:

Hψ = Eψ(
− ~2

2m
∇2 + U(r)

)
ψ = Eψ.

http://electrons.wikidot.com/energy-bands-in-solids-and-their-calculations
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Bloch theorem: proof I

All observables must have the same periodicity as the lattice.
Hence, the electron probability |ψ|2 must fulfill:
|ψ(r)|2 = |ψ(r + T)|2. Therefore, we can express ψ(r) as:

ψ(r + T) = e iθ(T)ψ(r),

where θ(T) is (at this stage arbitrary) phase, as |e iθ(T)|2 = 1

V(x)

xions
T

Ψ(x) Ψ(x + T )
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Bloch theorem

Bloch theorem: proof I

V(x)

xions

T1

Ψ(x) Ψ(x + T1)
T2

Ψ(x + T1 + T2)

T1 + T2

For two translations T1 and T2 we have

ψ(r + T1 + T2) = e iθ(T1+T2)ψ(r) = e iθ(T1)e iθ(T2)ψ(r)

Hence, θ(T1 + T2) = θ(T1) + θ(T2). Hence, the phase θ(T)
has form θ(T) = k · T, as the only this function fulfills the
requirement.
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Bloch theorem

Bloch theorem: proof I

In final, the electron wavefunction of the periodical potential
writes: ψ(r + T) = e ik·Tψ(r). In another words, the
translation by a lattice vector T is equivalent to multiplaying
the wavefunction ψ(r) by a phase factor e ik·T.

V(x)

xions
T

Ψ(x) Ψ(x + T )
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Bloch theorem

Bloch theorem: proof II

Let us assume, that the solution of ψ(r) is in form:

ψk(r) = e ik·ruk(r).

Then, we show that uk(r) has the same periodicity as the
lattice.

In point r + T the wavefunction has value:

ψ(r + T) = e ik·(r+T)uk(r + T),

whereas the previous proof provides:

ψ(r + T) = e ik·Tψ(r) = e ik·Te ik·ruk(r).

By comparing both equations, we see:

uk(r) = uk(r + T),

i.e. uk(r) has the same periodicity as the lattice.
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Wavefunction of the periodic potential is (Bloch theorem):

ψk(r) = exp(ik · r)uk(r),

uk(r) has equal periodicity as the lattice, uk(r) = uk(r + T).

exp(ik · r) corresponds to free-electron wave (free-electron
propagation). It implies that the electron propagates through the
crystal like a free (pseudo-free) particle.

Periodic part of Bloch function uk(x)

ψ = exp(ikx)uk(x)
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ψk(r) = exp(ik · r)uk(r),

Function uk(r) modulates this free-electron-like wave so that the
amplitude oscillates periodically form one cell to the next. It does
not affect the basic character of ψ, which is that of a traveling
wave. In reality the electron is not free, (it interacts with the lattice,
electrons etc), but its propagation has features of a free electron
propagation.

As the electron behaves like a wave with wavevector k, it has a
deBroglie wavelength and thus a corresponding momentum p = ~k.

Periodic part of Bloch function uk(x)

ψ = exp(ikx)uk(x)
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1D Fourier transform
Fourier transform:

F (k) =
1√
2π

∫ ∞
−∞

f (x) exp(−ikx)dx

Inverse Fourier transform:

f (x) =
1√
2π

∫ ∞
−∞

F (k) exp(ikx)dk

Build function f (x) as a
sum of harmonic func-
tions exp(ikx) having
amplitudes F (k).
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Fourier transform

1D Fourier transform
Fourier transform:

F (k) =
1√
2π

∫ ∞
−∞

f (x) exp(−ikx)dx

Inverse Fourier transform:

f (x) =
1√
2π

∫ ∞
−∞

F (k) exp(ikx)dk

Example: sound in real (time) and reciprocal (frequency) space:
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http://www.etc.tuiasi.ro/cin/Downloads/Fourier/Fourier.html

Basic properties of 1D Fourier
transformations

f (t) F (ω)=F.T.(f (t))

f (at)
1

|a|F
(ω
a

)
f ?(t) F ?(−ω) (conjugation)

f (t − t0) F (ω)e−it0ω

f (t)e iω0t F (ω − ω0)

f (t) cos(ωt)
1

2
[F (ω + ω0) + F (ω − ω0)]

dnf (t)

dtn
(iω)nF (ω)

(−it)nf (t)
dnF (ω)

dωn
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Dirac δ-function

Definition of δ-function

δ(x) =

{
+∞, x = 0

0, x 6= 0

so that

∫ ∞
−∞

δ(x) dx = 1

Properties:∫ ∞
−∞

f (x) δ(x − a)dx = f (a)

δ(ax) =
δ(x)

|a|∫ ∞
−∞

e ikxdk = 2πδ(x)
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Fourier series

Let us have periodic function f (x) with period T , f (x) = f (x + L). Then,

f (x) =
∞∑

n=−∞
cn exp(in

2πx

L
).

where

cn =
1

L

∫ L/2

−L/2

f (x) exp(−in
2π

L
x)dx
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Fourier series and Fourier transformation

Periodic function f (x) =
∞∑

n=−∞
cn exp(in

2πx

L
).

Fourier transform of periodic function f (x) is:

F (k) =
1√
2π

∫ ∞
−∞

f (x) exp(−ikx)dx =
1√
2π

∞∑
n=−∞

cn

∫ ∞
−∞

exp

[
ix(−n

2π

L
+ k)

]
dx

=
∞∑

n=−∞

√
2πcnδ(k − n

2π

L
).

V(x)

xions

F .T .−→
0−π

a−2πa−3πa
π
a 2πa 3πa

Reciprocal (G) points

Periodic function becomes a train of δ-functions with equidistant spacing.
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Reciprocal space (k-space)

In the real space, the quantities are expressed as function of
positions, e.g. V (r), ψk(r).

In the reciprocal space, the quantities are expressed as
function of wave-vector k or momentum p = ~k.

Conversion between real and reciprocal space is Fourier
transform, e.g. V (k) = F.T.(V (r)), and
V (r) = inv.F.T.(V (k)).
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Reciprocal space (k-space): potential V (x)
Potential V (x) of the crystal is periodical. Hence, in the reciprocal
space, V (k) consists of train (lattice) of δ-functions.

V (r)
real space

V(x)

xions

V (k)
reciprocal
space

0−π
a−2πa−3πa

π
a 2πa 3πa

Reciprocal (G) points



Optical properties of solids

Electron in periodic potential

Reciprocal space

Reciprocal space (k-space): potential V (x)

V(x)

xions

F .T .−→
0−π

a−2πa−3πa
π
a 2πa 3πa

Reciprocal (G) points

the position of δ-functions are called reciprocal points or
G -points, forming reciprocal lattice
the distance between G -points is given only by periodicity of
the function

⇒ any periodic function with equal periodicity is described by δ
functions at identical G -points

⇒ any periodic property of crystal (potential, electron density) is
expressed at identical G -points
the shape of the function is given by amplitudes of the
δ-functions
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Reciprocal space of 2D periodic function f (r)

2-dimensional (2D) periodic
function f (r) = f (r + Ru),
u ∈ Z, where translation
vectors R = u1a1 + u2a2

form Bravais lattice

→ a1, a2 called primitive
vectors

Fourier transform of f (r)
consists of 2D lattice of
δ-functions

→ each reciprocal point
denotes position of
δ-function

Bravais (real) lattice:

Reciprocal lattice:

Lin-Wei et al, JOSAA 25, 203 (2008)
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Reciprocal space

Reciprocal space of 2D periodic function f (r)

position of reciprocal points
Gm are determined by
relation Gm · Ru = 2πn,
n ∈ Z, originating from
condition exp(iGm · Ru) = 1

primitive vector of reciprocal
lattice are b1, b2, providing
Gm = m1b1 + m2b2

similar for 3D reciprocal
lattice

Bravais (real) lattice:

Reciprocal lattice:

Lin-Wei et al, JOSAA 25, 203 (2008)
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(First) Brillouin zone

Definitions:

Def1: First Brillouin zone is a smallest
possible cell in reciprocal space,
which by translation can form
whole reciprocal space.

Def2: Any point of the reciprocal space k
can be reached from the first
Brillouin zone kinside 1st Brillouin zone

added to a translation vector of the
reciprocal lattice Gmn:

k = kinside 1st Brillouin zone + Gmn.
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Brillouin zone

Properties of Brillouin zone:

Volume of the (first) Brillouin zone
Vk is inversely proportional to
volume of unit cell of the real
(direct) lattice Vr:

Vk =
(2π)N

Vr

N - dimension of lattice (2D or 3D)
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Brillouin zone

(First) Brillouin zone of fcc real space (bcc reciprocal)
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Brillouin zone

(First) Brillouin zone of bcc real space (fcc reciprocal)
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Bloch’s ψ(r) = uk(r) exp(ik · r) in the reciprocal space
uk(r) periodical part of Bloch’s function
exp(ik · r) plane wave.

As ψ(r) is not periodic in r, ψ(k) is expressed by train of
δ-functions shifted by k from the reciprocal points as
F.T.(f (x) exp(ik0x))=F (k − k0).

ψ(r)
real space

ψ(x)

xions

ψ(k)
reciprocal
space

0−π
a−2πa−3πa−4πa−5πa

π
a 2πa 3πa 4πa 5πa

F.T.(ψ(x)) = ψ(k)
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Brillouin zone

Bloch’s ψ(r) = uk(r) exp(ik · r) in the reciprocal space
ψ(x)

xions

0−π
a−2πa−3πa−4πa−5πa

π
a 2πa 3πa 4πa 5πa

F.T.(ψ(x)) = ψ(k)

as ψ(k) is described by a train of δ-functions in the reciprocal
space, it is enough to use k from the 1st Brillouin zone

⇒ reduction to the first Brillouin zone

wavevector k is a quantum number of the wavefunction:

⇒ k in crystal must be described by integer and hence must be
quantized number

→ Pauli principle: No two electrons in an atom/crystal can have
identical all quantum numbers.

⇒ Inside whole crystal, there can be only two electrons at each k
state (spin-up and spin-down)

So, how many k-states is in the crystal?
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Brillouin zone

Note: conservation of momentum p = ~k in a crystal

Energy conservation E : due to time-invariant space.

Momentum conservation p: due to translation-invariant space.

Angular momentum conservation L: due to rotation-invariant
space.

ψ(x)

xions

0−π
a−2πa−3πa−4πa−5πa

π
a 2πa 3πa 4πa 5πa

F.T.(ψ(x)) = ψ(k)

in crystal, there is no invariance of space in both translation
and rotation.

⇒ momentum p = ~k of the electron in crystal is not uniquely
defined, and it can behave as having any value
p = ~(k + Gm), Gm being any reciprocal vector in the lattice.
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How many k-states is in the crystal?

Na
a

We need to know, how many k-states are available inside whole
(macroscopic) crystal having N unit cells. Hence, boundary
conditions of ψ(r) on crystal’s interface must be described.

Number of k states in the Brillouin zone:

There is exactly as many allowed k-vector states in the Brillouin
zone as there is number of the unit cells in the crystal.
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Boundary conditions of ψ(r) on interface of the crystal:

Na
a

1st opt:

Describe standing waves inside the 1D box,
having boundary conditions ψ(x < 0) =
ψ(x > Na) = 0, where a is inter-atomic
distance and N is a number of atoms in x-
direction. However, difficult to handle ana-
lytically.

2nd opt: Cyclic (Born – von Kármán) boundary conditions
ψ(x) = ψ(x + Na). Not a real (physical) boundary conditions,
but accounts correct number of allowed k-states.
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Cyclic boundary conditions:

Let us demonstrate cyclic boundary conditions in x-direction:

ψ(x) = ψ(x + Na)

For Bloch electron in x-direction:

ψ(x) = e ikx uk (x)

ψ(x + Na) = e ikNae ikx uk (x) = e ikNaψ(x)

And hence: e ikNa = 1, providing kNa = 2πm, m ∈ Z. Hence,
allowed values of k are:

km =
2π

a

m

N
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Cyclic boundary conditions:

Due to the boundary conditions, not all values of k-vector are
allowed. Only allowed values of k are (m ∈ Z):

km =
2π

a

m

N
= G

m

N
,

i.e. the reciprocal translation vector G = 2π/a is divided to N
parts.
To generalize to 3D and general unit cell (general Brillouin zone):

Number of k states in the Brillouin zone:

There is exactly as many allowed k-vector states in the Brillouin
zone as there is number of the unit cells in the crystal.
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Free electron in 2D cubic crystal

Let us assume an electron inside 2D periodic lattice. However, we
assume wavefunction ψ = e ik·r (which is solution for U(r) = 0),

with energy E = ~2k2

2m (free electron approximation).

Assume crystal has N unit cells in 2D crystal, and Z electrons
per unit cell. Hence, whole crystal contains NZ electrons.

Pauli principle states that on each quantum state (i.e. for
each value of k-vector), the k-stae can contain only two
electrons (with spin-up and spin-down).

The electrons are filled to the electronic structure starting
from smaller energies, i.e. in our case from smaller k-vectors.
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Free electron states

Reduction to the Brillouin zone
In case of electron with k-vector outside Brillouin zone, the
k-vector can be shifted back to the first Brillouin zone,

k = kinside 1st Brillouin zone + Gmn

In free electron model, electron energy is E = ~2k2

2m .
Hence shift of k to the Brillouin zone provides electron bands (with
principal quantum number n > 0).
reduced zone extended zone repeated zone
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2D volume of the Brillouin zone Vk = 4π2/Vr contains 2N
electrons’ k-states (times 2 because of two spins).

The electron energy depends solely on |k|, the area of
constant energy is a sphere in the reciprocal space.

When all available electrons fill the
k-spaces, a circle is formed up to the
highest occupied energy (Fermi level),
with k-vector kF .

This 2D circle occupies reciprocal
space Vk = πk2

F , providing
πk2

F/(NZ ) = (4π2/Vr )/(2N). Hence,
the Fermi level of this circle has radius:

kF =

√
2π

Vr
Z ≡

√
2π

V
NZ .

This figure should be 2D!

EF =
~2k2

F

2m
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Free electron states

Free electron in 2D cubic crystal
Z = 4
What states are occupied and what are
filled?
square length: ka = 2π/a = 6.28/a
kF =

√
2πZ/(a2) = 5.01/a

kF/(ka/2) = 1.60 >
√

2

1st Brill. zone 2nd Brill. zone 3rd Brill. zone 4th Brill. zone

http://phycomp.technion.ac.il/~nika/fermi_surfaces.html

http://phycomp.technion.ac.il/~nika/fermi_surfaces.html
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Free electron states

Band structure of 2D electrons in cubic crystal



Optical properties of solids

Electron in periodic potential

Free electron states

Free electron in 3D
In the volume of the Brillouin zone Vk = 8π3/Vr there is 2N
electrons’ k-states.
The electron energy depends solely on |k|, the area of
constant energy is a sphere in the reciprocal space.
When all NZ available electrons fill
the k-spaces, they form a sphere called
Fermi sphere (terminated by Fermi
surface), with maximal k-vector kF .

This sphere occupies reciprocal space
Vk = 4

3πk3
F , providing

4
3πk3

F/(NZ ) = (8π3/Vr )/(2N).
Hence, the Fermi sphere has radius:

kF = 3

√
3π2

Vr
Z ≡ 3

√
3π2

V
NZ . EF =

~2k2
F

2m
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Free electron states
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Free electron states

Free electron in fcc:

Aluminium (fcc):

1s2 2s2 2p6 3s2 3p1

three unbounded
electrons
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Free electron states

Aluminium (fcc):

1s2 2s2 2p6 3s2 3p1

three unbounded
electrons

Cuprum (fcc):

[Ar] 3d10 4s1

eleven unbounded
electrons
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Density of states (DOS):

Density of states (DOS): number of electron’s states per energy
interval:

g =
d(NZ )

dE
.

For free elecctron, EF =
~2k2

F
2m , where kF = 3

√
3π2

V NZ .
Hence:

NZ =
V

3π2

(
2mE

~2

)3/2

Therefore, Density of states g(E ) of free
electron is:

g(E ) =
d(NZ )

dE
=

V

2π2

(
2m

~2

)3/2√
E
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Density of states

Si: complicated
DOS, contains gap
at Fermi level.

Al: nearly free elec-
trons DOS ∼

√
E .

Ag: d electrons
are burried and the
only electrons on
the Fermi level are
s-electrons.
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Complete energy levels in solids:

Core states:

Electrons in the spherical
potential of the nucleus
(bounded, not shared,
electrons).

Approximately, they correspond
to electrons in filled electronic
shells.

They provide sharp energies.

Quantum numbers without
spin-orbit coupling: n, l ,
m ≡ lz , s, sz

Quantum numbers with
spin-orbit coupling: n, l , s, j , jz

Free electrons in vacuum
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Complete energy levels in solids:
Occupied states:
Electrons shared through the crystal.
They approximately correspond to
valence electrons of the atoms.
They form energy bands.
Fermi level:
Energy level separating occupied and
unoccupied states.
Excited states:
Empty energy levels above Fermi
level. Electrons can be excited to
those states and then they relax
back.
Vacuum level:
Overcoming this barrier, electrons
do not feel periodical potential of
the crystal and become free.

Free electrons in vacuum
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Fermi surface

Fermi surface

As electrons fill the reciprocal space up to EF , they create a
boundary in the reciprocal space between filled and empty
k-spaces. This boundary is called Fermi surface.

Fermi surface in 2D, cubic (blue line):
1st Brill. zone 2nd Brill. zone 3rd Brill. zone 4th Brill. zone
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Electron in periodic potential

Fermi surface

Fermi surface in 3D

cubic:

Real atoms:
K(bcc) [Ar] 4s1 Ca(fcc) [Ar] 4s2 Al (fcc) [Ne] 3s2 3p1

http://www.phys.ufl.edu/fermisurface/

http://www.phys.ufl.edu/fermisurface/
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Example of some elements’ Fermi surfaces.
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Electron in periodic potential

Fermi surface

Example of some elements’ Fermi surfaces.
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Electron in periodic potential

Fermi surface

Comments on Fermi surface

Fermi surface is formed by free (unbounded or easily excited)
electrons. Such electrons are provides e.g. electrical or
thermal conductivity.

Hence, the metal can be defined as ’material having Fermi
surface’.

Semiconductors and insulators do not have Fermi surfaces,
because they do not have free electrons on Fermi level. In this
case, one Brillouin zone is completely full and next Brillouin
zone is completely empty.
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Electron in periodic potential

Fermi surface

Basic classification of materials (according to DOS):
metal semiconductor/isolator

no gap at Fermi level gap at Fermi level
Fermi surface no Fermi surface (filled BZ)
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Electron in periodic potential

Fermi surface

Basic classification of materials (according to DOS):

ferromagnet Dirac cone half-metal

different DOS for up
and down electrons
Fe(bcc): [Ar]4s23d6

Fermi surface is a
dot.
(graphene, Nobel
price 2010)

gap only for spin
down (or only for
spin up)
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Sketch of the electronic
structure in solids:

Core electrons: localized
electrons on each atoms.
Shared electrons: form
occupied band structure.
Excited electrons: ex-
cited to excited states of
the crystal, still interacting
wit (bonded to) the crystal.
Ionized electrons: excited
above vacuum level and
hence they are free (no in-
teraction with the crystal).

Free electrons in vacuum
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Photon absorption

Photon spectroscopies (absorption) I:

The optical properties are based on probability of photon
absorption:

1 material’s absorption of photons i.e. imaginary part of
permittivity =(ε) [determined usually by electric-dipole
approximations].

2 real part of permittivity <(ε) by Kramers-Kronig relations
Then, the optical properties are then described by complex
numbers, e.g. complex permittivity ε or complex refraction
index N or complex conductivity σ, ε = N2 = 1 + iσ/ω
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Photon absorption

Photon spectroscopies (absorption) II:

Different photon energy ranges excites and probes different part of
the electronic structure of the matter.

dc conductivity, THz=far-infrared: energy about kT ≈ 30 meV.
Excites vicinity of the Fermi surface (charge, spin and
heat transfer and their combinations).

extended visible light (mid-infrared – far-UV): ∼ 30 meV - 100 eV.
Both starting and final states are in the band
structure (both not simply identified) (reflectometry,
ellipsometry, MOKE).

X-ray: ∼ 120 eV – 120 keV. Excites deep core levels of the
atoms. XAS (X-ray absorption spectroscopy).
Starting levels are from core levels and hence they are
easy to identify.
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Fermi golden rule

Time dependent perturbation theory I
(according Solid State Physics, M. S. Dresselhaus, http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf)

Unperturbated Hamiltonian with eigenstates

H0 |n〉 = En |n〉
is perturbated by time-dependent perturbation H ′(t)

H = H0 + H ′(t)

and we search for solutiuon of Schrödinger equation

i~
∂

∂t
|ψ〉 = (H0 + H ′(t)) |ψ〉

The solution is searched as a sum of H0 eigenstates weighted by
time-dependent expansion coefficients an(t)

|ψ(t)〉 =
∑

n

an(t) |n〉 exp(−iEnt/~)

http://web.mit.edu/course/6/6.732/www/6.732-pt2.pdf
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Fermi golden rule

Time dependent perturbation theory II

|ψ(t)〉 =
∑

n

an(t) |n〉 exp(−iEnt/~)

By substituting |ψ(t)〉 to Schr. Eq., multiplying from left by 〈k |
and using ortonormality 〈k |n〉 = δnk

ȧk (t) =
1

i~
∑

n

an(t) 〈k |H ′(t)|n〉 exp(iωknt)

which is exact solution up-to now and where ~ωkn = Ek − En.
Assuming (i) H ′(t) is small (ii) at t = 0, quantum state is only |l〉,
i.e. al (0) = 1, an 6=l (0) = 0.

ȧk (t) =
1

i~
〈k|H ′(t)|l〉 exp(iωkl t)

which can be integrated to obtain ak (t) =
∫ t

0 dt ′ȧk (t ′).
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Fermi golden rule

Time dependent perturbation theory III

Assuming, that hamiltonian perturbation is harmonic,
H ′(t) = H ′(0) exp(±iωt):

ak (t) =
1

i~
〈k |H ′(0)|l〉

∫ t

0
dt ′ exp(i(ωkl ± ω)t ′)

=
1

i~
〈k |H ′(0)|l〉 exp(i(ωkl ± ω)t)− 1

i(ωkl − ω)

with amplitude of ak (t) being (using identity
| exp(ix)− 1|2 = 4 sin2(x/2))

|ak (t)|2 =
| 〈k |H ′(0)|l〉 |2

~2

4 sin2((ωkl ± ω)t/2)

(ωkl ± ω)2



Optical properties of solids

Optical properties of solids

Fermi golden rule

Time dependent perturbation theory IV

|ak (t)|2 =
| 〈k |H ′(0)|l〉 |2

~2

4 sin2((ωkl ± ω)t/2)

(ωkl ± ω)2

|ak (ω)|2 has peak at ω = ωkl , i.e. at
resonance

the peak width is about 2π/t

however, Heisenberg uncertainity principle states

∆E ∆t ∼ 2π~, i.e. ∆ωkl ∼
2π

t

Hence, the time of transition probability is so small, that the
uncertainity in energy (frequency) covers about full width of the
peak.
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Fermi golden rule I
We introduce probability of transition from state |l〉 to state |k〉
per time Wk . Second, as in solid state, there is large number of
similar k-states in the solids, we sum-up also transition
probabilities, where the transition happens at or nearby k-state.
Hence, we sum transition probability over all possible k-states
accesible due to uncertainity principle. Number of states in the
vicinity of energy ωkl is given by (joint) density of states
dN = ρ(Ekl )dE = ρ(Ekl )~dωkl .

Wk =
1

t

∫
dN|ak (t)|2 =

~
t

∫
dωkl |ak (t)|2ρ(~ωkl )

integrated over energies (frequencies).
The only quickly changing function is the peak, sinc(x), and hence

Wk =
4~
~2t
〈k|H ′|l〉 ρ(Ekl )

∫
dωkl

sin2((ωkl ± ω)t/2)

(ωkl ± ω)2
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Fermi golden rule

Fermi golden rule II

Using ∫ ∞
−∞

sin2x

x2
dx = π

x = (ωkl ± ω)t/2

we finally get (Fermi golden rule = transition probability per time
per volume)

Wl→k ≡Wk =
2π

~
| 〈k|H ′(0)|l〉 |2ρ(Ekl )
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Fermi golden rule

Perturbation Hamiltonian for oscillating electromagnetic
field I

A: vector potential, B = ∇× A, E = −∇φ− ∂
∂t A

φ can be zero for electromagnetic wave (charge is zero and
gauge transformation can be selected in such a way)

Then, electromagnetic field can be written as
A(t) = A(0) exp(−iωt), E = iωA

Then, perturbated Hamiltonian is (introducing non-zero
vector potential A by substitution p→ p− eA)

H = H0 + H ′ =
1

2m
(p− eA)2 + eφ− µ · B + U(r)
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Fermi golden rule

Perturbation Hamiltonian for oscillating electromagnetic
field II

H = H0 + H ′ =
1

2m
(p− eA)2 + eφ− µ · B + U(r)

Two perturbations appeares:

H ′ = − e
m p · A: el-mag field ’moves’ electron charge. It

provides so called electric dipolar transitions. Dominant term
for interband and intraband optical transitions, i.e. photon
absorption process for dc, optical and X-ray frequency range.

H ′ = −µ ·B = e~
2mσ ·B: el-mag field ’moves’ electron spin. It

providing so called magnetic dipole transitions. It governs
effects changing spin direction e.g. creation of magnon, FMR
excitation, absorption in NMR, where electric dipole
transitions are not allowed.
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Fermi golden rule

Electric-dipole transitions:

The largest contribution to the photon absorption is given by
so-called electric-dipole transitions valid for λ� a.

Hence, whole vast energy range can be described by so-called
Kubo formula, determining conductivity (absorption) for a
given photon energy .

As k-vector is conserved during optical transitions from conductive
to valence band, the joint density of states is

ρcv (~ω) =
2

8π3

∫
BZ

d3kδ(Ec(k)− Ev (k)− ~ω)

Substituting this to Fermi golden rule, and assuring the transition
goes from occupied to unoccupied state, we obtain Kubo formula
expressing light absorption in matter.
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Kubo formula
Conductivity (propertional to probability of photon absorption)

=(εxx ) ∼ <(σxx ) ∼∑
i ,f

[f (Ei )− f (Ef )]× [|〈i |p+|f 〉|2 + |〈i |p−|f 〉|2]× δ(Ef −Ei − ~ω)

where

〈i |, |f 〉: initial and final states, respectively.

p± = px ± ipy , px = i~∂/∂x , momentum operator

terms in the Kubo formula means:
summation over all initial and final states, 〈i | and |f 〉
f (Ef ), f (Ei ): electron occupancy of initial and final states.
|〈i |p±|f 〉|2: probability of the photon to be absorbed between
〈i | and |f 〉 states for circularly left/right polarized light
(non-zero only when electric-dipole selection rules are fulfilled).
δ(Ef − Ei − ~ω) assures energy conservation.
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Kubo formula

Selection rules of electric-dipole transitions:
Electric dipole transition is allowed when following conditions are fulfilled:

Energy: Ef − Ei = ~ω (absorbed photon energy is difference
between energies of the final and initial electron states)

Momentum: ~ω/c ≈ 0 (photon has negligible momentum compared to
one of the electron. I.e. the momentum of the electron is
kept between initial and final state (vertical transitions)).

Electron spin : ∆s = 0 (probability photon’s spin=1 is transferred to
electron’s spin is tiny ⇒ electron’s spin is preserved for
electric dipole transitions)

Orbital momentum: ∆l = ±1 (photon has angular
momentum 1~). Therefore only
s ↔ p, p ↔ d etc. transitions are
allowed.

Orbital momentum along z-axis (magnetic number):
∆m = ±1 (determines if photon is
circularly right or left polarized).
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Kubo formula

Kramers-Kroning relations I

0) Kramers-Kroning relations relates real and imaginary of
the complex function, e.g. of the optical spectra of the
permittivity.
Purely based on mathematical relation between real and
imaginary part of ’polite’ functions (Cauchy integral).
1) mathematics: Cauchy residual theorem states (for any
function without poles in integration area):∮

χ(ω′)

ω′ − ω dω′ = 0

2) for function χ(ω′)/(ω′ − ω), we create pole in point ω′ = ω. Hence
Cauchy integral becomes (assuming the integral over ’arc’ is zero, i.e.
function χ is enough small at infinity):∮

χ(ω′)

ω′ − ω dω′ = P
∞∫
−∞

χ(ω′)

ω′ − ω dω′ − iπχ(ω) = 0.

I.e. function in point χ(ω) equals to the integral over whole ω′!
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Kubo formula

Kramers-Kroning relations II

Rearranging:

χ(ω) =
1

iπ
P
∞∫
−∞

χ(ω′)

ω′ − ω dω′.

3) Amplitude of χ(t) is real. Further, χ(ω)=F.T.(χ(t)). Hence
χ(ω) = χ∗(−ω). Hence, relation between <(χ) and =(χ) is

<(χ(ω)) =
2

π
P
∞∫

0

ω′=(χ(ω′))

ω′2 − ω2
dω′

=(χ(ω)) = −2ω

π
P
∞∫

0

<(χ(ω′))

ω′2 − ω2
dω′

Which are famous Kramers-Kronig relations.
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Kubo formula

Kramers-Kroning relations III

Absorption line (i.e. =(ε)) is
described by Lorenzian function.
Kramers-Kronig then
determines its real part.

notice finite shift in <(ε) even
for ω � ω0. It corresponds to
e.g. situation when light
propagating in glass is not not
absored, however, its
propagation speed is smaller to
c due to absorption at higher
frequencies.

Example: Lorenzian function
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Kubo formula

Kramers-Kroning relations IV

Comment on Kramers-Kronig relations:

In Kubo formula, <(ε) can be equally obtained by introducing
finite linewidth Γ, i.e. by replacing δ-function by finete-width
Lorenzian function:

δ(Ef − Ei − ~ω)→ 1

Ef − Ei − ~ω + iΓ
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Contributions to optical permittivity
Optical permittivity ε: ε = <(ε) + i=(ε)

=(ε) means light absorption.

<(ε) and =(ε) are related by
Kramers-Kronig (KK) relations.

the light absorption consist of several
contributions; their sum provides resulting
light absorption

1 vaccum permittivity: ε∞ = 1
2 Drude term (free electron).
3 Lorentz term (resonance line).
4 Tauc-Lorentz (semiconductor gap).
5 many others

Example:
Heusler
compound
Co2FeAl0.5Si0.5
Balke et al
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Lorentz oscillator (Lorentz contribution)
photon absorption due to bound states

εLorentz =
A2

ω2
0 − ω2 − iΓω

ω: Photon energy

ω0: Energy distance between the energy
levels (i.e. resonance energy)

A: Amplitude (probability of the
absorption)

Γ: Width of the line (sharpness of the
absorption) (i.e. full width at half
maxima: FWHM) -0.4
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Can be determined also from damped oscilator model:

m
d2y

dt2
+ mΓ

dy

dt
+ mω2

0y = E cos(ωt)

where material’s polarization is P = ε0εE = yNq.
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Contributions to optical permittivity

Free electron contribution: Drude contribution

εDrude =
A2

−ω2 − iΓω

photon absorption due to free
electrons (i.e. due to conductivity)

Drude is like Lorenz, for ω0 = 0

amplitude A also called plasma
frequency ωp; at this frequency
<(εDrude) = 0 for ε∞ = 1

when Drude is expressed in
permittivity, limω→0=(εDrude) =∞
driving equation

m
d2y

dt2
+ mΓ

dy

dt
= E cos(ωt)
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Contributions to optical permittivity

Tauc-Lorentz contribution
Tauc-Lorentz contribution describes optical properties of
(amorphous) semiconducor at photon energies near the gap:

εTL = A

(
ω − ωgap

ω

)2

H(ω − ωgap)=
(

1

ω2
0 − ω2 − iωΓ

)

i.e. Tauc-Lorentz is
expressed by multiplication
of Lorentz function,
parabolic function, and
Heaviside step function
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Contributions to optical permittivity

With more careful calculations, one can win;
with less, one cannot.
How much less chance of victory has one who makes no
calculations at all!

Sun Tzu: The Art of War
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Spin-orbit coupling: Dirac equation

Spin-orbit coupling term couples spin of the electron σ = 2S/~
with movement of the electron mv = p− eA in presence of
electrical field E.

HSOC = − e~
4m2c2

σ · [E× (p− eA)]

The maximal coupling is obtained when all three componets are
perpendicular each other.
The spin-orbit term can be determined from solution of electron
state in relativistic case. The equation describing relativistic
electron is called Dirac equation, relativistic analogue of
Schrodinger equation.
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Dirac equation: introduction I

Relativity describes nature at high speeds, v ≈ c .

Relativity unites time and space, described by Lorentz
transformation

x ′ =
x − vt√
1− v2

c2

t ′ =
t − vx

c2√
1− v2

c2

⇒ relativistic quantum theory must do the same. Schrodinger
equation does not fulfils this, as it it has first derivative in
time and second in space.
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Dirac equation: introduction II

Relativistic theory expresses total energy of the particle as:

W 2 = p2c2 + m2
0c4 (1)

Quantum operator substitution: p→ p̂ = −i~∇,
W → Ŵ = i~∂/∂t. It follows in Klein-Gordon equation(

∇2 − 1

c2

∂2

∂t2
− m2

0c2

~2

)
ψ(r, t) = 0 (2)

This Eq. reduces to Eq. (1) for plane wave (free particle)
ψ(r, t) = exp[i(r · p−Wt)/~]. This condition limits following
solutions to particles with spin 1/2, as space-time wavefunction is
symmetric, and hence spin-part must be antisymmetric.
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Dirac equation: derivation I

1 let as ASSUME, the Dirac equation will have first derivative in
time. Then, it must be also in first derivative in space.

2 wave function is superposition of N base wavefunctions
ψ(r, t) =

∑
ψn(r, t)

3 must fulfil Klein-Gordon equation, Eq. (2)

General expression of condition 1:

1

c

∂ψi (r, t)

∂t
= −

∑
w=x ,y ,z

N∑
n=1

αw
i ,n

∂ψn

∂w
− imc

~

N∑
n=1

βi ,nψn(r, t) (3)
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Dirac equation: derivation II

When expressed in matrix form (ψ is column vector, αk
i ,n is

3× N × N matrix, βi ,n is N × N matrix)

1

c

∂ψ(r, t)

∂t
= −α̃ · ∇ψ(r, t)− imc

~
β̃ψ(r, t) (4)

Substituting quantum operators p̂→ −i~∇, we get Dirac equation

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t) = (cα̃ · p̂ + β̃mc2)ψ(r, t) (5)

where matrices α̃, β̃ are unknown.
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Dirac equation: non-relativistic limit

When Dirac equation is solved up to order 1/c2, we get

Ĥ =
1

2m

(
~
i
∇− eA(r)

)2

+ V (r) + mc2 Unrelativistic Hamiltonian

− e~
2m
σ · B Zeeman term

− e~
4m2c2

σ · [E× (p− eA)] Spin− orbit coupling

− 1

8m3c2
(p− eA)4 Mass of electron increases with speed

+
~2e

8m2c2
∇2V (r) Darwin term

Darwin term: electron is not a point particle, but spread in volume
of size of Compton length ≈ ~/mc .
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Spin-orbit coupling: discussion I

Spin-orbit coupling term can be sepaarted into two components:

− e~
4m2c2

σ · [E× (p− eA)] = − e~
4m2c2

σ · [E× p] +
e2~

4m2c2
σ · [E× A]

= HSOC + HAME

AME=Angular magneto-electric

The electric field E = −1

e
∇V − ∂

∂t
A

canonical momentum p = −i~∇ (conjugate variable of

position;
∂H

∂xi
= −ṗi ,

∂H

∂pi
= ẋi )

kinetical momentum mv = p− eA (defines kinetic energy and
represents velocity)
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Understanding spin-orbit coupling

HSOC in spherical potential, static case

HSOC = − e~
4m2c2

σ · [E× p]

Spherical potential V (r) = V (|r|) = V (r); static case ∂
∂t A = 0:

eE = −∇V (|r|) =
dV (r)

dr

r

|r|

providing:

HSOC =
~

4m2c2

1

r

dV

dr
σ · (r × p) =

1

2m2c2

1

r

dV

dr
S · L = ξS · L

where spin angular momentum S = ~
2σ and orbital angular

momentum L = r × p
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Understanding spin-orbit coupling

Understanding spin-orbit coupling: spherical potential

spin of the electron creates electron’s magnetic
moment (in SI)

µS = − e

m
S = − e

m

h

2
σ = −µbσ = −2µB

~
S

where µB = e~
2m is Bohr magneton.

orbital moment (around atomic core) creates
magnetic moment too

µL = − e

2m
L = −µB

~
L = −µB l

(or can be understood as creating magnetic field
Heff due to current created by electron orbital)

the mutual static energy of spin and orbital is
then ESO,approx = −µS · Beff or just electrostatic
interaction between both magnetic dipoles.
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Understanding spin-orbit coupling

Understanding spin-orbit coupling: Lorentz transformation

Electromagnetic field appears different as observing frame is
moved. For example, if a charge is moving in the laboratory frame
(unprimed), we observe both electric and magnetic fields. In the
frame of the moving charge (primed), only electric field is observed
and the current and magnetic field are absent. Lorentz
transformation of el.-mag. fields between both frames is:

E′‖ = E‖ B′‖ = B‖

E′⊥ =
(E + v × B)⊥√

1− v2

c2

B′⊥ =
(B− v/c2 × E)⊥√

1− v2

c2

where ⊥ and ‖ are relative to the direction of the velocity v.
I.e. for small speeds, E′ = E + v × B and B′ = B− v

c2 × E
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Understanding spin-orbit coupling

Understanding spin-orbit coupling: Lorentz transformation

For electron flying by speed v through static electric field E, in its
frame the electron feels magnetic field B′ = −−v

c2 × E, which
torques/acts on its spin. The Hamiltonian is given by Zeeman
interaction

HSO,E→B = −µS · B′ (6)

= −
(
− e~

2m
σ

)
·
(
− 1

c2
(−v)× E

)
(7)

= − e~
2m2c2

σ · (E× p) (8)

which is twice larger compared to HSOC derived from Dirac
equation. Missing half is due to Thomas precession (in case of
electron orbiting nucleus, it is the precession of the electron rest
frame as it orbits around the nucleus).
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Understanding spin-orbit coupling

Lorentz transformation: extrinsic spin Hall effect
In laboratory frame, spin-Hall effect provides scattering of electrons
on charged impurity along to electron spin.
In electron frame, it can be understood as charge current from
impurities, providing magnetic field, according which the electron
spin aligns.
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Examples of spin-orbit effects

Examples of spin-orbit effects

HSOC = − e~
4m2c2

σ · [E× (p− eA)]

Various SOC effects are obtained by different origins of A and
E = 1

e∇V − ∂
∂t A.

Examples:

SOC in spherical potential (already discussed)

optical spin pumping: excitation of electrons with selective
spins in GaAs

E has contribution originating from interface of two materials:
→ Rasha effect

A has contribution of incident light: coupling between angular
momentum of light and electron spin (optomagnetic field)
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Examples of spin-orbit effects

Example: splitting of atomic levels by SOC
Splitting of atomic levels due to spin-orbit coupling (without
magnetic field). The energy levels corresponds to different values
of the total angular momentum J

J = L + S

J · J = (L + S) · (L + S) = L · L + S · S + 2 〈L · S〉
j(j + 1) = l(l + 1) + s(s + 1) + 2 〈L · S〉

〈L · S〉 =
1

2
[j(j + 1)− l(l + 1)− s(s + 1)]

For p states, l = 1, s = 1/2 and j = 3/2 (4 electrons) or 1/2 (2
electrons). So, due to spin-orbit coupling (without magnetic field),
the energy level of electron splits into two levels.
Thus, the spin-orbit interaction does not lift all the degeneracy for
atomic states. To lift this additional degeneracy it is necessary to
apply a magnetic field.
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Examples of spin-orbit effects

Optical spin orientation

Electron excitation by circularly polarized beam in GaAs excites
electrons with selective spins.

for ~ω between Eg and
Eg + ∆SO , only the
light and heavy hole
subband are excited.
Then for zinc-bland
structure (e.g. GaAs),
the spin-polarization is
Pn = −1/2.

Light polarization can
also be used to detect
spin polarization in
semiconductors.
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Examples of spin-orbit effects

Rashba effect I

Rashba Hamiltonian: electric field E is
created on interface, E ‖ ẑ :

HRashba = α(σ × p) · ẑ
α: Rasba coupling
p: electron’s momentum
σ: spin direction (Pauli matrix vector)

The Rashba effect is a momentum dependent splitting of spin bands in
two-dimensional condensed matter systems (heterostructures and surface
states). It originates from concurrent appearance of

spin-orbit coupling

asymmetry of the potential in the direction ẑ perpendicular to the
two-dimensional plane, creating electric field E = Ez ẑ = − 1

e∇V
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Examples of spin-orbit effects

Rashba effect II

http://www.sps.ch/fr/articles/progresses/

For p = px and HRashba = α(σ × p) · ẑ ⇒ HRashba = −αpxσy

splitting of energy states according to p and σ directions.

max. splitting when z , p and σ are perpendicular each other.

when crystal lacks inversion symmetry, internal electric field E is
created.

http://www.sps.ch/fr/articles/progresses/
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Examples of spin-orbit effects

Optomagnetic field I

according to: Paillard, Proc. of SPIE 9931, 99312E-1 (2016)

HAME = − e2~
4m2c2

σ · [E× A]

Assume electric field as plane wave

Eext = −∂A

∂t
= < (E0 exp[i(k · r − ωt)])

providing vector potential as A = <(− i
ωE0 exp[i(k · r − ωt)])

Electric field acting on electron has two contributions,
E = Eint + Eext, Eint = −1/e∇V provided by crystal and Eext

provided by incoming el.-mag. field.

term [Eint ×A] vanishes as Eint varies much quicker compared
to A (due to a� λ).
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Examples of spin-orbit effects

Optomagnetic field II

HAME = − e2~
8m2c2ω

σ · <[iE0 × E∗0] = −µB · BOM

BOM = − µB

ε0c3ω~
Iσhelicity

µ = −µbσ: electron magnetic moment, µb = e~/(2m) Bohr
magneton

σhelicity = <[iu× u]: helicity of beam, where u is beam
polarization, u = E0/E0

I = cε0
2 E 2

0 : beam intensity

direction of BOM is determined by helicity of the incident
beam σhelicity

Note: although BOM contributes to magnetization torque by
induced light, it is not probably the dominanting term.
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Attenuated total reflection

Techniques using evanescent light wave
Attenuated total reflection & Surface plasmon polariton
Reflection and total reflection

Snell law:
√
ε1 sinϕ1 =

√
ε2 sinϕ2

Critical angle:

sinϕc =

√
ε2

ε1
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Avanescent wave techniques

Attenuated total reflection

Light reflection on the interface

1 Maxwell equations

2 solution as plane wave
E = E0 exp(i(k · r − ωt))

3 boundary conditions at the
interface:
E,H fields: continuous
transverse (x , y) components
D,B fields: continuous normal
(z) components

4 for total reflection, solution of
transverse wave is in form so
called evanescent wave,
non-propagating in z-direction
E = E exp(−kz z)
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Avanescent wave techniques

Attenuated total reflection

Light reflection on the interface

http://www.ece.rice.edu/~daniel/262/pdf/lecture14.pdf

http://www.ece.rice.edu/~daniel/262/pdf/lecture14.pdf
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Attenuated total reflection

Light reflection on the interface

Reflection on glass/air
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Attenuated total reflection

Total reflection

Critical angle:

sinϕc =

√
ε2

ε1
=

n2

n1

Evanescent wave:

E = Et exp(−z/δ − iωt)

Penetration depth:

δ =
1

k0

√
(n1 sinϕ1)2 − (n2

2)

Example: glass(n1)/water(n2)
inteerface; n1 > n2

http://www.tirftechnologies.com/principles.php

http://www.tirftechnologies.com/principles.php
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Attenuated total reflection

Attenuated total reflectance (ATR)

probes sample by evanescent
wave

⇒ sensitive to surface of the
sample

sample modifies evanescent
wave → partial absorption or
transmission of light in sample
→ total reflection is decreased
(attenuated).
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Attenuated total reflection

Attenuated total reflectance (ATR): gap effect

Gap thickness (refractivity of
gap=1):

Absorption in gap (gap thickness
960 nm):
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Surface plasmon resonance

Surface plasmon (electrical excitation providing two
adjacent evanescent waves in the vicinity of the interface)

Electric field in the vicinity of the interface:

E = EO exp[i(kx x + kz z − ωt)]

where

k2 = k2
x + k2

z = ε (ω/c)2 = εk2
0 (9)

At the interface of two materials ε1 and ε2:
(a) kx continuous over the interface;

kx1 = kx2 (10)

(b) Dz and Ex continuous over the interface

kz1/ε1 = kz2/ε2 (11) http://www.physics.uwo.ca/~smittler/

http://www.physics.uwo.ca/~smittler/
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Surface plasmon resonance

Surface plasmon II: dispersion relation

• From Eqs.(9–11) follows
dispersion relation for surface
plasmon:

kx = k0

√(
ε1ε2

ε1 + ε2

)
, (12)

where k0 = ω/c .
• Surface plasmon appears only
for p-polarized (TM) wave, as
this mode has normal (z)
component of D = εε0E field.
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Surface plasmon resonance

Surface plasmon III: example

Example: assuming ε1 = 1 (air)

and ε2 = 1− ω2
p

ω2 (metal as free
electron model of an electron gas
= Drude, neglecting absorption).
Then

kx =
ω

c

√(
ω2 − ω2

p

2ω2 − ω2
p

)
(13)

Hybridization between photon
(ω = ck0) and plasmon
ωSP = ωp/

√
2.
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Surface plasmon resonance

Surface plasmon resonance (SPR) I
• Resonance between incident wave photon and surface plasmon.
Resonance means that both (pseudo)-particles have equal ω and
kx = kx,inc = <(kx,sp).
•Description of incident wave from material ε1 under angle ϕ:

kx,inc =
ω

c

√
ε1 sinϕ (14)

• Description of surface plasmon:

kx,sp =
(ω

c

)√( ε1ε2

ε1 + ε2

)
, (15)

Condition for existence of the resonance: <(ε2) < −ε1 (i.e. <(ε2) must
be negative; fulfilled by coinage metals, Au, Ag, Cu). Here, ε1 is assumed
to be non-absorbing material (i.e. =(ε1) = 0).
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Surface plasmon resonance

Surface plasmon resonance (SPR) II

Surface plasmons are very
sensitive to slight perturbations
within the skin depth ⇒ surface
plasmons are often used to probe
tiny changes of refraction index
near the interface (extreme
sensitive detector of small
changes of the refraction index).
⇒ Readout of many bio-sensors
based on this detection
technique.

http://www.bionavis.com/technology/spr/

http://www.bionavis.com/technology/spr/
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Surface plasmon resonance

SPR: detection I

• presence of resonance
increases absorption
and reduces reflectivity.
• position of reflection
minima very sensitive
to refractivity index in
position of the
evanescent wave.
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Surface plasmon resonance

SPR: detection II

• presence of resonance
increases absorption
and reduces reflectivity.
• position of reflection
minima very sensitive
to refractivity index in
position of the
evanescent wave.
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Surface plasmon resonance

SPR: how to couple surface plasmon and photon?

couple light by
high-refraction index prism

lateral modulation of the
interface (roughness or
structuring)

ω/c sinϕ+2π/b = ω/c

√
ε2

ε2 + 1
(16)
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Surface plasmon resonance

SPR: bio sensors

http://www.bionavis.com/technology/spr/

http://www.bionavis.com/technology/spr/
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Spin-orbit interaction of light

K.Y. Bliokh, Nature Photon. 9, 796 (2015)

Similar to spin-orbit coupling of electron, there is spin-orbit
coupling also for photon (for light beam).

Spin-orbit interaction of electron: connect spin wavefunction
and space wavefunction

Spin orbit coupling of photon: connects beam trajectory and
its polarization state (also know as optical spin-Hall effect).
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Angular momenta of light I

Spin angular momentum S:
degree of circular polarization (helicity)
σ = (−1, 1)

S = σ
k

k
= σ

p

p

Extrinsic orbital angular momentum Lext :
determined by the trajectory of the beam R
Lext = R× p
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Angular momenta of light II

Intrinsic angular momentum Lint :
helical phase front: phase of the beam
depends on position inside beam,
approximately
E (r , z , φ) ≈ E0(r , z) exp[ilφ], where r ,
z , φ are coordinates in cylindrical
coordinates.

Lint = l
k

k
, l ∈ Z
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Optical spin Hall effect I

Interactions between those three
angular momenta of light represents
spin-orbit coupling of light.
Example: optical spin Hall effect:
The light beam on reflection displaces
(shifts) according to the beam helicity
σ. Consequence of total angular
momentum conservation:

J = S + Lext = S + R× p

adjusting coordinates that incident
beam has R = 0 and hence Lext = 0
S− S′ ≈ R′ × p′

K.Y. Bliokh, Nature Photon. 9, 796 (2015)
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Optical spin Hall effect II

J = S + Lext = const.
displacement of beam due to
light helicity inside the glass
cylinder with gradient of
refraction index.

ṗ = ∇n(R) Ṙ =
p

p
− σ

k0

p× ṗ

p3

(overdot denotes derivation
according to the trajectory)
Bliokh Nature Photon. 2, 748 (2008)
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Spin trasnfer by evanescent wave

Electrical field of the evanescent
wave (propagation along y , recall
E · k = 0):

k =

 0
ky

iK

 E =

 0
i(−K/ky )Ez

Ez





Optical properties of solids

Spin-orbit interaction of light

Profile of electric field

Profiles of electric field in paraxial beam and evanescent beam,
providing longitudinal and transverse spin angular momentum.
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Selection of evanescent wave propagation

As spin of the evanescent wave is given by propagation of spinwave, the
polarization (helicity) of incoming beam determines propagation direction
of the evanescent wave.

”Remarkably, the universal character of spin-direction locking in
evanescent waves can be associated with the quantum spin-Hall effect of
photons, which makes it an optical counterpart of the quantum spin-Hall
effect of electrons in topological insulators”
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Polariton

Polariton I

Polariton: coupling between photon and
excitation of the matter. Here we discuss
coupling with optical phonon.

m
d2u

dt
+ ω2

TOm = eE cos(ωt)

u: amplitude of optical phonon

E : driving electrical field at ω

u =
P

Ne
=

eE/m

ω2
TO − ω2

ε(ω) = ε∞ +
Ω2

p

ω2
TO − ω2

Mills, Rep. Prog. Phys. 37, 817 (1974)
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Polariton

Polariton II

Polariton dispersion:
ε(ω) = ε∞ +

Ω2
p

ω2
TO − ω2

Note: longitudinal mode frequency ωLO defined by ε(ωLO) = 0
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Polariton

Polariton example: CoTiSb
Infrared (IR) reflectivity:

One dominant and one satellite peaks
→ originating from atomic vibrations
(phonons).
Described by weak Drude and three
sharp Lorenzians.
Phonon energies at Γ-point agrees
perfectly well with exp. (≈30 meV).

Photon energy [eV]
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Polariton

Excitons

Excition is electron-hole pair binded by
Coulomb’s electrostatic attraction.

This is very similar to a hydrogen
atom, like an electron orbiting around
a proton. However, the binding energy
is much lower, due to small effective
masses of the excited electron and
hole. Eexciton ∼ 1/n2, n ∈ N
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Polariton

Excitons in ZnO

ZnO: large gap direct
semiconductor (3.3 eV @ RT)

Strong excitonic binding energy
≈60 meV

excitons add sharp absorptions
to optical spectra

Schmidt-Grund, Thin Solid Films 455, 500 (2004)

Jellison PRB 58, 3586 (1998)
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Polariton

Optics of multilayers I
Total optical response of multilayer
described by reflection matrix:

R =

[
rss rsp

rps rpp

]
Reflection matrix is the only
quantity accessible for sample
investigations by optical means.
Roughness of the interfaces is
included by:

1 usually described by effective
sub-layers.

2 their optical properties
described by e.g. effective-
medium-approximation
(EMA).

optical

int1

int2
lay1

lay2

substrate substrate

int3

lay1

lay2

reality model
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Polariton

Optics of multilayers II

Total optical response of multilayer described by reflection matrix:

R =

[
rss rps

rsp rpp

]
Different quantities can be investigated on reflection:

reflectivity (unpolarized light): I = 1/2(|rss |2 + |rpp|2)

reflectivity of s-polarized light: Is = |rss |2
magneto-optical Kerr s-effect: Φs = θs + iεs =

rsp

rss

ellipsometry: ρ = tan Ψ exp(−i∆) =
rpp

rss

magnetic linear dichroism for s-wave (M in-plane):
MLD = |rss(M ‖ s)|2 − |rss(M ‖ p)|2
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Polariton

Light in multilayer system

1) Solution of Maxwell equations in homogeneous (but generally
anisotropic) material:

k2E− k(k · E) =
ω2

c2
E · E

general solution are four waves, two propagating in two directions
(’up’, ’down’), each having different polarization.
2) on surfaces, boundary conditions are applied (transversal
components of E and H fields are continuous over the interface)
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Polariton

Optical properties of mixtures

spherical inclusions of materials 1 and 2:

εeff − εh

εeff + 2εh
= f

ε1 − εh

ε1 + 2εh
+ (1− f )

ε2 − εh

ε2 + 2εh

εeff : effective medium permittivity

εh : host medium permittivity

f , 1− f : volume fraction of the first, second material

ε1, ε2 : permittivities of the first, second material

Maxwell-Garnett : εh = ε1 (host medium is one of the constituent
media)

Lorentz-Lorenz : εh = 1 (host medium is air)

Bruggeman : (also known as EMA=Effective medium approximation)
εh = εeff : host medium is effective mediuam itself
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Polariton

Ellipsometry I
Ellipsometry measures complex ratio of diagonal reflection coefficients:

ρ = tan Ψ exp(−i∆) =
rpp

rss

Ψ, ∆: so-called ellipsometric angles Ψ, ∆

Ψ expresses ratio of reflected s- and p-waves

∆ expresses phase difference of reflected s- and p- waves.
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Polariton

Ellipsometry II

experimental setup provides spectra of Ψ, ∆

those spectra are fitted into optical model, where various parameters
can be free parameters in the fit (but not all at the same fit):

optical constants of a given layer (can be further described by
a various functions)
layer thicknesses
interface roughnesses

Example of fit to spectra of Ψ, ∆
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X-ray spectroscopy

X-ray absorption spectroscopy (XAS):

http://news.softpedia.com

http://news.softpedia.com
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Spin-orbit interaction of light

X-ray spectroscopy

https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm

https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm
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X-ray spectroscopy

Experimental setup of XAS
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X-ray spectroscopy

X-ray absorption spectroscopy (XAS):
XAS is extremely sensitive to the chemical state each element, as each
element have its own characteristic binding energies. XAS measurements
can distinguish the form in which the element crystallizes (for example
one can distinguish diamond and graphite, which both entirely consist of
C), and can also distinguish between different sites of the same element.

http://beamteam.usask.ca/

http://beamteam.usask.ca/
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X-ray spectroscopy

XAS on Fe:

Stöhr, Siegmann, Magnetism:
From fundamentals to nanoscale
dynamics

Starting L2, L3 edge (i.e. 2p1/2, 2p3/2, respectively):

IXAS , p→d ∼ Nh

Nh: number of free d-states. p → s has small contribution.
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X-ray spectroscopy

XMCD: X-ray Magnetic circular dichroism:

Circular Dichroism: different absorption for circularly left and right
light polarization.

Different absorbed intensity for opposite magnetization
orientations.
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X-ray spectroscopy
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X-ray spectroscopy

XMCD: Detailes p → d transition
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X-ray spectroscopy

XMCD: sum rules:

https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm

https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm
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X-ray spectroscopy

Advantages of X-ray spectroscopies:

element selective.

quantitative determination of material characterization (e.g.
magnetic moment, orbital moment).

can be both interface or bulk sensitive.

can provide excellent lateral resolution (∼ 15 nm).

can provide excellent time resolution (∼ 100 fs).

Disadvantages:

due to width of the initial (core) line, the energy resolution is
limited to ∼1 eV.

synchrotron needed.
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Photoemission spectroscopy (photon in – electron out)

Photoemission spectroscopy (PES)

- Photon in, electron out.
- Based on the
photoelectric effect
(electrons kick out by
incoming photon).
- Also called Photoelectron
spectroscopy.
- Probes density of states
below Fermi level.
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Photoemission spectroscopy (photon in – electron out)

Photoemission spectroscopy (PES or XPS)
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Photoemission spectroscopy (photon in – electron out)

Photoemission spectroscopy (PES)

photon in (known energy),
electron out (energy
measured)

elemental composition of
the surface (top 1–10 nm
usually).

detect all elements except
H and He.

chemical or electronic
state of each element in
the surface.

mapping of elemental
composition across the
surface.
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Photoemission spectroscopy (photon in – electron out)

Photoemission spectroscopy principle
Ephoton = Eionized electron + Ebinding

⇒ when ionizing core-levels, outgoing dependence electron yield
on detected electron kinetic energy Eelectron provides sharp peaks.
⇒ when exciting valence band, valence band occupancy can be
found.

probing core levels probing valence bands by HAXPES
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Photoemission spectroscopy (photon in – electron out)

Photoemission spectroscopy (PES)

Ultraviolet photoemission spectroscopy (UPS)
- vacuum UV radiation (photon energy of E = 10–45 eV) to
examine valence levels.
- when varied detection angles, one can map out energy in the
reciprocal space.

X-ray photoemission spectroscopy (XPS)
- soft x-rays (E = 200–2000 eV) to examine down to
core-levels.
also known as Electron Spectroscopy for Chemical Analysis
(ESCA).

Hard X-ray photoemission spectroscopy (HAXPES, HX-PES):
- using hard X-ray to excite down to deep core levels.
- bulk sensitive
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Photoemission spectroscopy (photon in – electron out)

Angle resolved photoemission spectroscopy (ARPES):

Both energy and direction of the ionized electrons are measured.

Momentum conservation:

pionized electron = pphoton + pbound electron + ~K

as pphoton ≈ 0, hence pionized electron = pbound electron + ~K.

hence, the ionized electron has the same momentum as the
original bound electron (plus ~K due to lattice periodicity).

hence, by measuring the excitation angle with respect to
crystallographic direction, one can determine the dispersion
relation E (k) of the electrons inside the matter.
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Photoemission spectroscopy (photon in – electron out)

Angle resolved photoemission spectroscopy (ARPES)

Electronic structure of graphite Fermi surface of Cu3Au(111)

http://www.tp2.uni-erlangen.de

http://www.tp2.uni-erlangen.de
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Inverse photoelectron spectroscopy (IPES)

Inverse photoelectron spectroscopy (IPES)
Electron in, photon out.

- low incidence electron
energy Ekin (∼ 20 eV).
→ those electrons couple
to unoccupied states Ekin

above Fermi level
→ when electrons decays
to lower states, radiates
photon.
- when photons pass
narrow-band filter (i.e.
only one energy passes),
unoccupied DOS mea-
sured.

http://rsl.eng.usf.edu
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Inverse photoelectron spectroscopy (IPES)

Inverse photoelectron spectroscopy (IPES): properties

as small electron energy, only surface is tested.

can provide k-resolution, as ARPES.

can provide spin-resolution.

Example of IPES on Si(100) surface

http://e1.physik.uni-dortmund.de
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Auger and characteristic X-ray

Auger electron spectroscopy (AES) and characteristic X-ray

electron in (∼ 3 –10 keV).

inner shell of an atom is ionized.

the vacancy is filled by an electron
from an outer shell.

the released energy is emitted as
(characteristic) X-ray or is
transferred by electromagnetic
interaction to a 3rd electron. If it
gets sufficient energy it can leave
the atom as Auger electron.

energy of both radiations is
determined by the energy levels of
the atom and makes analysis of
the composition possible.

http://www.ifw-dresden.de/institutes/ikm/organisation/dep-31/methods/auger-electron-spectroscopy-aes
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Auger and characteristic X-ray

Characteristic X-ray radiation
Characteristic X-ray radiation is used to generate X-ray radiation in
X-ray tubes. (most common X-ray source used e.g. in medical

X-rays or X-ray diffractometers).

Radiation consists of characteristic single-energy radiation (denoted Kα,
Kβ etc) and continuous Bremsstrahlung. For example, Cu Kα has energy
8.06 keV (0.15418 nm). Also called X-ray fluorescence or X-ray emission
spectroscopy (XES).
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Auger and characteristic X-ray

Auger electron spectroscopy:

Only H and He do not emit Auger
electrons (The Auger process).

measured Auger electron spectra.

⇒ element and chemical states
identification.

element detect limit about ≤ 1%.

depth information 0.5–5 nm (surface
technique).

in combination with electron
microscopy, local analysis (points,
areas, lines) are possible.

Disadvantage: high energy and
current density of the primary electron
beam, producing many defects.

http://www.ifw-dresden.de/institutes/ikm/organisation/dep-31/methods/auger-electron-spectroscopy-aes
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Auger and characteristic X-ray

Examples of Auger spectra

Rh(111) monolayer of NiO on Pd

http://surface-science.uni-graz.at/main frame/techniques/aes.htm
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Auger and characteristic X-ray

Processes related with electron-in
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Auger and characteristic X-ray

Processes related with photon-in

XAS X-ray absorption spectroscopy

XMCD X-ray magnetic circular dichroism

NEXAFS near edge absorption fine structure

PES, XPS photoemission spectroscopy, photoelectron spectroscopy

UPS ultraviolet absorption spectroscopy

XES, XFS X-ray emission spectroscopy, X-ray fluorescence spectroscopy

HAXPES hard X-ray absorption photoemission spectroscopy

http://www.theochem.kth.se/research/xspectra/index.html
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Auger and characteristic X-ray

NASA’s Mars Exploration Rover Spirit

Rock named Clovis:

The Rovers are both designed to search for water using a variety of
instruments, including a mini-Thermal Emission Spectrometer, a
Mossbauer Spectrometer, and Alpha Particle X-ray Spectrometer.
http://rst.gsfc.nasa.gov/Sect19/Sect19 13a.html
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Auger and characteristic X-ray

Alpha Particle X-Ray Spectrometer (APXS) on Rover

“. . . will expose the material to alpha particles and X-rays emitted during the
radioactive decay of the element curium.” “When X-rays and alpha particles interact
with atoms in the surface material, they knock electrons out of their orbits, producing
an energy release by emitting X-rays that can be measured with detectors.”
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Auger and characteristic X-ray

NASA’s Mars Exploration Rover Spirit

“On Earth, Goethite - a very common mineral associate with Limonite -
is found as an alteration product or as a direct precipitate in the so-called
”bog iron” deposits, which result from a reducing, water-rich swampy
environment. That form of Goethite is usually produced with the aid of
bacteria but can also form inorganically. The mode of origin of the Clovis
Goethite is still ”up for grabs” but the presence of this mineral suggests a
significant role for water in Mars’ past.”
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Synchrotron

X-ray beam generation in synchrotrons
Undulator: Wiggler:
small electron oscillation ampli-
tude, narrow energy band emis-
sion, smaller light intensity.

large electron oscillation ampli-
tude, wide energy band emission,
higher light intensity

- Electron trajectory determines light polarization.
- Photon energy can be from IR to hard X-ray. Mostly used is
X-ray.
- Quick X-ray pulses (up to 100 fs ) are possible.
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Synchrotron

Synchrotron radiation source:

National Synchrotron Light source, USA Grenoble



Optical properties of solids

Magneto-optical effect

Magneto-optical Kerr effect:

Change of optical properties (polarization state, reflectivity)
by presence/change of magnetization of the sample.

One can separate usage of magneto-optical (MO) effects to:

MO as a metrology tool to study magnetism:

MO magnetometry (study of magnetization reversal).
MO microscopy (study of domain wall and its propagation).
Magnetization dynamic studies (precession etc.)
MO as a tool for ultrafast magnetization processes.

MO spectroscopy to study optical properties of the MO effect:

Magnetism is understand as a perturbation, reducing symmetry
of the solids and hence introducing new optical features.
Study of spin-orbit interaction.
Interaction between light and magnetism – a very fundamental
interaction.
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Examples of magneto-optical effects

MO effect I: Magneto-optical Kerr effect (MOKE):
For example: incident s-polarized wave.

Magnetized sample
⇒ hence: also p-polarized wave appears on the reflection.

MOKE linear in M

θs : Kerr rotation.

εs : Kerr ellipticity.
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Examples of magneto-optical effects

Kerr and Faraday magneto-optical effect:

Due to historical reasons, there are different names for MO effects
measured in reflection and transmission.

Kerr effect:

measured in reflection.

discovered 1876.

Faraday effect:

measured in transmission.

discovered 1845.
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Examples of magneto-optical effects

MO effect II: transversal MOKE:

Incident p-polarized wave.

Magnetization in-plane and perpendicular to the incident
plane (so-called transversal magnetization direction).

Change of the reflected p-polarized intensity due to
magnetization in the sample (in this particular case, on
change in polarization of the reflected light appears).



Optical properties of solids

Magneto-optical effect

Examples of magneto-optical effects

MO effect III: Magnetic dichroism and birefringence:

Dichroism: different damping of both light’s eigen-modes.

Birefringence: different propagation speed of both light’s
eigen-modes.

Magnetic circular dichroism (MCD):

Different absorption for
circularly left and right
polarized light.

MCD linear in M.

MOKE and MCD has the same
microscopic origin, they just
manifest in different ways.
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Examples of magneto-optical effects

MO effect IV: Voigt effect:

Discovered 1899.

Different absorption or phase shift for
linear polarization parallel and
perpendicular with the
magnetization.

Quadratic in M (∼ M2).

Also called Cotton-Mouton effect or
linear magnetic
dichroism/birefringence (LMD/LMB)

The same microscopic origin as
quadratic MOKE (QMOKE) (more
precisely, Voigt effect is simplest case
of QMOKE).
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Examples of magneto-optical effects

Classification of the MO effects:
Even / odd effect in magnetization.
Measured in transmission / reflection.
Detected change of intensity / polarization.
Probing light is linearly / circularly polarized.
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Examples of magneto-optical effects

Family of magneto-optical effects:

Linear pol. Detected: Polariz. Detected: Intensity

Linear in M MOKE, (Kerr and
Faraday effect) [Hall
effect]

Transversal-MOKE

Quadratic in M QMOKE, Voigt ef-
fect, Linear Mag-
netic Birefringence
(LMB)

Linear Magnetic
Dichroism (LMD)
[AMR]

Circular pol. Detected: Polariz. Detected: Intensity

Linear in M Mag. Circular Bire-
fringence (MCB)

Magnetic Circular
Dichroism (MCD)

Quadratic in M ? quadratic-MCD (?)

[...] denotes nomenclature in research of conductivity.
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Origin of magneto-optical effects

Origin of MO effect (microscopical):
Electronic structure of the FM material

[microscopic description]
⇓

Permittivity tensor of each layer
[phenomenological description]

ε =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


⇓

Reflectivity matrix of whole sample
[maximal accessible optical information]

R =

[
rss rsp

rps rpp

]
⇓

Measured Kerr effect: Φs =
rps

rss⇓
Signal measured by MO setup
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Origin of magneto-optical effects

MOKE configurations and permittivity tensor:

Polar MOKE
M ⊥ sample surface

Longitudinal MOKE
M ‖ plane of incidence

Transversal MOKE
M ⊥ plane of incidence

Polarization induced by magnetization: ∆PM = ε1(M× E) ε0 −ε1mz 0
ε1mz ε0 0

0 0 ε0

  ε0 0 ε1my

0 ε0 0
−ε1my 0 ε0

 ε0 0 0
0 ε0 −ε1mx

0 ε1mx ε0


Φs/p(mz ) Φs/p(my ) ∆rpp(mx )
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Origin of magneto-optical effects

MO effects and permittivity tensors

[Note: tensors on this slide are only illustrative.]
⇒ Linear MOKE: PMOKE, LMOKE, TMOKE, MCD, MCB, [Hall] ε0 −ε1mz ε1my

ε1mz ε0 −ε1mx

−ε1my ε1mx ε0

 MO signal ∼ ε1(mi )

⇒ Quadratic MOKE: ε0 ε1(mi mj ) 0
ε1(mi mj ) ε0 0

0 0 ε0

 MO signal ∼ ε1(mi mj )

⇒ Voigt effect: MLD, MLD, [AMR]εxx (mi mj ) 0 0
0 εyy (mi mj ) 0
0 0 εzz (mi mj )

 MO signal ∼√
εzz (mi mj )− εyy (mi mj )
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Origin of magneto-optical effects

Magneto-optical spectroscopy microscopic picture

Simplified electronic structure for one point of the k-space.
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Origin of magneto-optical effects

No spin-orbit coupling assumed:

⇒ no MOKE effect
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Origin of magneto-optical effects

No exchange assumed:

⇒ no MOKE effect
⇒ both SO coupling and exchange must be present to have MOKE.
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Origin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

QMOKE arises from different absorptions for E ⊥M and E||M.
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Magneto-optical effect

Origin of magneto-optical effects

Quadratic Magneto-optical Kerr effect (QMOKE):

QMOKE arises from different absorptions for E ⊥M and E||M.
⇒ arrises from different electronic structure in ke ⊥M and ke ||M.
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Origin of magneto-optical effects

Condutivity (and hence absorption of the photon)
Kubo formula: conductivity determination.

<[σxx ] ∼
∑
i ,f

[f (Ei )−f (Ef )]×[|〈i |p+|f 〉|2+|〈i |p−|f 〉|2]×δ(Ef−Ei−~ω)

=[σxy ] ∼
∑
i ,f

[f (Ei )−f (Ef )]×[|〈i |p+|f 〉|2−|〈i |p−|f 〉|2]×δ(Ef−Ei−~ω)

where

〈i |, |f 〉: initial and final states, respectively.

p± = px ± ipy , px = i~∂/∂x , momentum operator
terms in the Kubo formula means:

summation over all initial and final states, 〈i | and |f 〉.
f (Ef ), f (Ei ): electron occupancy of initial and final states.
|〈i |p±|f 〉|2: probability of the photon to be absorbed between
〈i | and |f 〉 states for circularly left/right polarized light
(non-zero only when electric-dipole selection rules are fulfilled).
δ(Ef − Ei − ~ω) assures energy conservation.
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Use of magneto-optical effects

MOKE advantages and disadvantages:
spatial resolution limited by wavelength limit (∼300nm for visible
light) → but sub-wavelength resolution demonstrated.
investigation on distance, light can be transported nearby sample by
a fibre.
no need of vacuum or special sample preparation.
depth resolution about 30nm.
measurements do not influence sample magnetization.
high time resolution.
depth selectivity.
vectorial resolution (possible to determine all magnetization
components).
robust, cheap technique.

BUT:
spatial resolution limited by wavelength limit.
easy to overcome Kerr signal by spurious noise (S/N ratio problem).
not direct information about the electronic structure or magnetic
moments etc.
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Use of magneto-optical effects

Extensions of MOKE:

XMCD, XMLD for high photon energy.

Non-linear magneto-optics
⇒ MO second harmonic generation.

Inverse Faraday effect (ultrafast optical switching).

(Stanciu et al, PRL 99, 047601 (2007))

Observation of spin accumulation in GaAs (spin Hall effect).

(Kato et al, Science, 2004)
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