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Spin-orbit coupling

Dirac equation

Spin-orbit coupling: Dirac equation

Spin-orbit coupling term couples spin of the electron σ = 2S/~
with movement of the electron mv = p− eA in presence of
electrical field E.

HSOC = − e~
4m2c2

σ · [E× (p− eA)]

The maximal coupling is obtained when all three componets are
perpendicular each other.
The spin-orbit term can be determined from solution of electron
state in relativistic case. The equation describing relativistic
electron is called Dirac equation, relativistic analogue of
Schrodinger equation.
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Dirac equation: introduction I

Relativity describes nature at high speeds, v ≈ c .

Relativity unites time and space, described by Lorentz
transformation

x ′ =
x − vt√
1− v2

c2

t ′ =
t − vx

c2√
1− v2

c2

⇒ relativistic quantum theory must do the same. Schrodinger
equation does not fulfils this, as it it has first derivative in
time and second in space.
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Dirac equation: introduction II

Relativistic theory expresses total energy of the particle as:

W 2 = p2c2 + m2
0c4 (1)

Quantum operator substitution: p→ p̂ = −i~∇,
W → Ŵ = i~∂/∂t. It follows in Klein-Gordon equation(

∇2 − 1

c2

∂2

∂t2
− m2

0c2

~2

)
ψ(r, t) = 0 (2)

This Eq. reduces to Eq. (1) for plane wave (free particle)
ψ(r, t) = exp[i(r · p−Wt)/~]. This condition limits following
solutions to particles with spin 1/2, as space-time wavefunction is
symmetric, and hence spin-part must be antisymmetric.
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Dirac equation: derivation I

1 let as ASSUME, the Dirac equation will have first derivative in
time. Then, it must be also in first derivative in space.

2 wave function is superposition of N base wavefunctions
ψ(r, t) =

∑
ψn(r, t)

3 must fulfil Klein-Gordon equation, Eq. (2)

General expression of condition 1:

1

c

∂ψi (r, t)

∂t
= −

∑
w=x ,y ,z

N∑
n=1

αw
i ,n

∂ψn

∂w
− imc

~

N∑
n=1

βi ,nψn(r, t) (3)
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Dirac equation: derivation II

When expressed in matrix form (ψ is column vector, αk
i ,n is

3× N × N matrix, βi ,n is N × N matrix)

1

c

∂ψ(r, t)

∂t
= −α̃ · ∇ψ(r, t)− imc

~
β̃ψ(r, t) (4)

Substituting quantum operators p̂→ −i~∇, we get Dirac equation

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t) = (cα̃ · p̂ + β̃mc2)ψ(r, t) (5)

where matrices α̃, β̃ are unknown.
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Dirac equation: non-relativistic limit

When Dirac equation is solved up to order 1/c2, we get

Ĥ =
1

2m

(
~
i
∇− eA(r)

)2

+ V (r) + mc2 Unrelativistic Hamiltonian

− e~
2m
σ · B Zeeman term

− e~
4m2c2

σ · [E× (p− eA)] Spin− orbit coupling

− 1

8m3c2
(p− eA)4 Mass of electron increases with speed

+
~2e

8m2c2
∇2V (r) Darwin term

Darwin term: electron is not a point particle, but spread in volume
of size of Compton length ≈ ~/mc .



Optical properties of solids

Spin-orbit coupling

Understanding spin-orbit coupling

Spin-orbit coupling: discussion I

Spin-orbit coupling term can be sepaarted into two components:

− e~
4m2c2

σ · [E× (p− eA)] = − e~
4m2c2

σ · [E× p] +
e2~

4m2c2
σ · [E× A]

= HSOC + HAME

AME=Angular magneto-electric

The electric field E = −1

e
∇V − ∂

∂t
A

canonical momentum p = −i~∇ (conjugate variable of

position;
∂H

∂xi
= −ṗi ,

∂H

∂pi
= ẋi )

kinetical momentum mv = p− eA (defines kinetic energy and
represents velocity)



Optical properties of solids

Spin-orbit coupling

Understanding spin-orbit coupling

HSOC in spherical potential, static case

HSOC = − e~
4m2c2

σ · [E× p]

Spherical potential V (r) = V (|r|) = V (r); static case ∂
∂t A = 0:

eE = −∇V (|r|) =
dV (r)

dr

r

|r|

providing:

HSOC =
~

4m2c2

1

r

dV

dr
σ · (r × p) =

1

2m2c2

1

r

dV

dr
S · L = ξS · L

where spin angular momentum S = ~
2σ and orbital angular

momentum L = r × p
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Understanding spin-orbit coupling: spherical potential

spin of the electron creates electron’s magnetic
moment (in SI)

µS = − e

m
S = − e

m

h

2
σ = −µbσ = −2µB

~
S

where µB = e~
2m is Bohr magneton.

orbital moment (around atomic core) creates
magnetic moment too

µL = − e

2m
L = −µB

~
L = −µB l

(or can be understood as creating magnetic field
Heff due to current created by electron orbital)

the mutual static energy of spin and orbital is
then ESO,approx = −µS · Beff or just electrostatic
interaction between both magnetic dipoles.
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Understanding spin-orbit coupling: Lorentz transformation

Electromagnetic field appears different as observing frame is
moved. For example, if a charge is moving in the laboratory frame
(unprimed), we observe both electric and magnetic fields. In the
frame of the moving charge (primed), only electric field is observed
and the current and magnetic field are absent. Lorentz
transformation of el.-mag. fields between both frames is:

E′‖ = E‖ B′‖ = B‖

E′⊥ =
(E + v × B)⊥√

1− v2

c2

B′⊥ =
(B− v/c2 × E)⊥√

1− v2

c2

where ⊥ and ‖ are relative to the direction of the velocity v.
I.e. for small speeds, E′ = E + v × B and B′ = B− v

c2 × E
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Understanding spin-orbit coupling: Lorentz transformation

For electron flying by speed v through static electric field E, in its
frame the electron feels magnetic field B′ = −−v

c2 × E, which
torques/acts on its spin. The Hamiltonian is given by Zeeman
interaction

HSO,E→B = −µS · B′ (6)

= −
(
− e~

2m
σ

)
·
(
− 1

c2
(−v)× E

)
(7)

= − e~
2m2c2

σ · (E× p) (8)

which is twice larger compared to HSOC derived from Dirac
equation. Missing half is due to Thomas precession (in case of
electron orbiting nucleus, it is the precession of the electron rest
frame as it orbits around the nucleus).
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Lorentz transformation: extrinsic spin Hall effect
In laboratory frame, spin-Hall effect provides scattering of electrons
on charged impurity along to electron spin.
In electron frame, it can be understood as charge current from
impurities, providing magnetic field, according which the electron
spin aligns.
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Examples of spin-orbit effects

HSOC = − e~
4m2c2

σ · [E× (p− eA)]

Various SOC effects are obtained by different origins of A and
E = 1

e∇V − ∂
∂t A.

Examples:

SOC in spherical potential (already discussed)

optical spin pumping: excitation of electrons with selective
spins in GaAs

E has contribution originating from interface of two materials:
→ Rasha effect

A has contribution of incident light: coupling between angular
momentum of light and electron spin (optomagnetic field)
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Example: splitting of atomic levels by SOC
Splitting of atomic levels due to spin-orbit coupling (without
magnetic field). The energy levels corresponds to different values
of the total angular momentum J

J = L + S

J · J = (L + S) · (L + S) = L · L + S · S + 2 〈L · S〉
j(j + 1) = l(l + 1) + s(s + 1) + 2 〈L · S〉

〈L · S〉 =
1

2
[j(j + 1)− l(l + 1)− s(s + 1)]

For p states, l = 1, s = 1/2 and j = 3/2 (4 electrons) or 1/2 (2
electrons). So, due to spin-orbit coupling (without magnetic field),
the energy level of electron splits into two levels.
Thus, the spin-orbit interaction does not lift all the degeneracy for
atomic states. To lift this additional degeneracy it is necessary to
apply a magnetic field.
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Optical spin orientation

Electron excitation by circularly polarized beam in GaAs excites
electrons with selective spins.

for ~ω between Eg and
Eg + ∆SO , only the
light and heavy hole
subband are excited.
Then for zinc-bland
structure (e.g. GaAs),
the spin-polarization is
Pn = −1/2.

Light polarization can
also be used to detect
spin polarization in
semiconductors.
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Rashba effect I

Rashba Hamiltonian: electric field E is
created on interface, E ‖ ẑ :

HRashba = α(σ × p) · ẑ
α: Rasba coupling
p: electron’s momentum
σ: spin direction (Pauli matrix vector)

The Rashba effect is a momentum dependent splitting of spin bands in
two-dimensional condensed matter systems (heterostructures and surface
states). It originates from concurrent appearance of

spin-orbit coupling

asymmetry of the potential in the direction ẑ perpendicular to the
two-dimensional plane, creating electric field E = Ez ẑ = − 1

e∇V
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Rashba effect II

http://www.sps.ch/fr/articles/progresses/

For p = px and HRashba = α(σ × p) · ẑ ⇒ HRashba = −αpxσy

splitting of energy states according to p and σ directions.

max. splitting when z , p and σ are perpendicular each other.

when crystal lacks inversion symmetry, internal electric field E is
created.

http://www.sps.ch/fr/articles/progresses/
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Optomagnetic field I

according to: Paillard, Proc. of SPIE 9931, 99312E-1 (2016)

HAME = − e2~
4m2c2

σ · [E× A]

Assume electric field as plane wave

Eext = −∂A

∂t
= < (E0 exp[i(k · r − ωt)])

providing vector potential as A = <(− i
ωE0 exp[i(k · r − ωt)])

Electric field acting on electron has two contributions,
E = Eint + Eext, Eint = −1/e∇V provided by crystal and Eext

provided by incoming el.-mag. field.

term [Eint ×A] vanishes as Eint varies much quicker compared
to A (due to a� λ).
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Optomagnetic field II

HAME = − e2~
8m2c2ω

σ · <[iE0 × E∗0] = −µB · BOM

BOM = − µB

ε0c3ω~
Iσhelicity

µ = −µbσ: electron magnetic moment, µb = e~/(2m) Bohr
magneton

σhelicity = <[iu× u]: helicity of beam, where u is beam
polarization, u = E0/E0

I = cε0
2 E 2

0 : beam intensity

direction of BOM is determined by helicity of the incident
beam σhelicity

Note: although BOM contributes to magnetization torque by
induced light, it is not probably the dominanting term.


