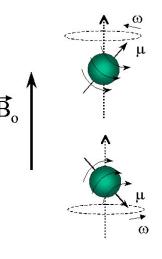
(Nuclear) Magnetic Resonance (NMR)

- Based on precession of spin of the nucleus in magnetic field.
- \Rightarrow Can be used only for nuclei having magentic moment (i.e. spin).
- ⇒ The isotope must have odd number of protons and/or of neutrons. I.e. zero spin have only nuclides with even numbers of protons and neutrons.
 - magnetic moment of neutron: $-1.9130427(5)\mu_N$
 - magnetic moment of proton: $2.792847351(28)\mu_N$
 - \blacksquare magnetic moment of electron: $-1.00115965218111 \mu_B$ where
 - Bohr magneton: $\mu_B = \frac{e\hbar}{2m_e}$, m_e rest mass of electron.
 - Nuclear magneton: $\mu_N = \frac{e\hbar}{2m_p}$, m_p rest mass of proton.
 - Isotopes of particular interest and use to organic chemists are 1 H, 13 C, 19 F and 31 P, all of which have I = 1/2.


Larmor frequency

- Precession of magnetic moment inside magnetic filed.
- Larmor frequency of nucleus

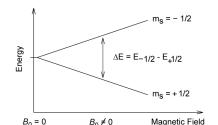
$$\omega = \frac{2\mu_N}{\hbar}B$$

Corresponding frequencies are:

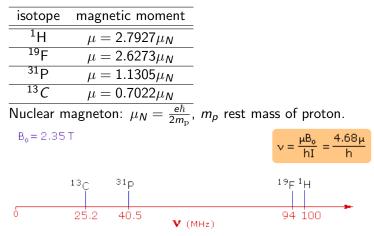
- *f*_{proton} = 42.578 MHz/T
- $f_{\text{electron}} = 28.025 \,\text{GHz/T}$
- The spin of nucleus can be driven by an external electro-magnetic (EM) wave.
 When its frequency is in resonance (i.e. is equal) with Larmor frequency of the spin, the spin precesses more and the EM wave gets damped.

(日)

Larmor frequency - quantum picture


Alternatively, driving precession can be understand as absorption of photon

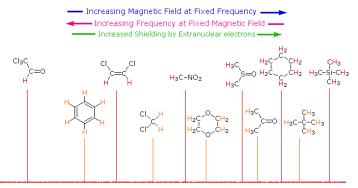
 Energy levels of nucleus spin direction are split by an external magnetic field (spin-up and spin-down)


$$\Delta E = \gamma \hbar B \equiv 2\mu_N B$$

- As electric-dipolar transition is not allowed, the transition is magnetic-dipolar transition.
- Note, magnetic dipole transitions are typically about 10⁵ times more unlikely than similar electric dipole transitions.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Example of NMR typical frequencies

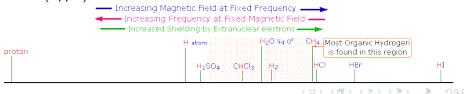


http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

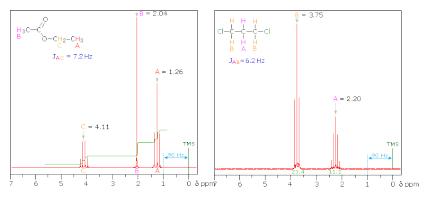
NMR spectroscopy

- Nucleus serves as a sensitive probe of local magnetic field.
- Local magnetic field in nucleus position slightly varies due to screening of surrounding electrons (chemical shift). Typical change in ppm - part per million.
- Sensitive only to one isotope (typically ¹H, i.e. proton).


¹H NMR Resonance Signals for some Different Compounds

NMR: Why different nuclei have different resonance frequency?

- Electrons are charged particles ⇒ they move in response to the external magnetic field ⇒ secondary field opposed to the applied field is created.
- The external magnetic field acting on nuclei are screened by surrounding electrons ⇒ the field acting on nuclei is smaller (i.e. resonance frequency get smaller)



 typical change due to electron screening is 0.005% (5 ppm).

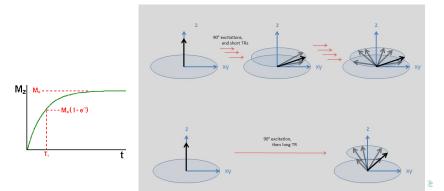
NMR spectroscopy

- \blacksquare Signal strength \rightarrow concentration of a given nucleus in a given enviroment.
- Exchange (spin-spin) interaction provides splitting of energy levels (so called J-coupling).

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm

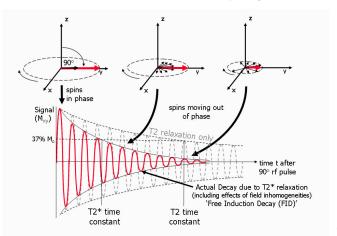
NMR relaxation

Measuring relaxation time of magnetization upon its excitation to its thermodynamically stable state.


- Spin excitation be external rf pulse → relaxation of spins back to thermodynamic state (i.e. aligned along applied field). At this stage, relaxation time is measured.
- two different relaxation times are measured, longitudinal T₁ and transversal T₂.

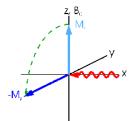
・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

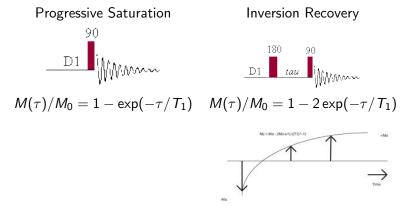
those time constants says about surrounding electronic structure and inhomogeneity of magnetic field.


NMR relaxation: longitudinal

- longitudinal (or spin-lattice) relaxation time T₁: the decay constant for the recovery of the 2 component of the nuclear spin magnetization M_z, towards its thermal equilibrium value M_{z.eq}.
- $\hat{B} \parallel \hat{z}$. If M has been tilted into the xy plane, then and the recovery is simply $M_z(t) = M_{z,eq}(1 \exp(-t/T_1))$

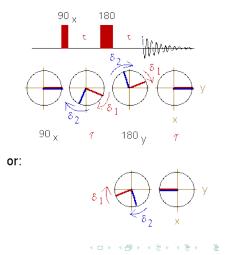
NMR relaxation: transversal


transversal (or spin-spin) relaxation time T₂: the net magnetization starts to dephase as the spins feel a slightly different magnetic field and hence rotates at its own Larmor frequency.


NMR — $\pi/2$ -pulse and π -pulse

- $\vec{B} \parallel \hat{z} \Rightarrow$ Larmor frequency of magnetization at frequency ω .
- pulse of oscillating magnetic field in xy-plane $\vec{B} = B_1(\hat{x} \cos \omega t + \hat{y} \sin \omega t)$ applied in y direction.
- $\Rightarrow\,$ than the magnetization precess with increasing amplitude.
- ⇒ when duration of pulse has correct length, the magnetization precession angle reaches 90°, i.e. it rotates in *xy*-plane (so called $\pi/2$ -pulse).
- $\rightarrow\,$ similarly, one can create $\pi\text{-pulse},$ which reverses magnetization direction.

(日) (四) (日) (日) (日) (日)


Determination of relaxation by pulse trains: T_1 determination

http://www.chem.queensu.ca/facilities/nmr/nmr/webcourse/

Determination of relaxation by pulse trains: T_2 determination

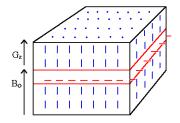
- first π/2 pulse move spins to xy plane.
- then, spins starts to become out-of-phase, due to slightly different precession frequencies.
- after time τ, π-pulse is applied. Spins are still in xy-plane, but their position is mirrored by yz-plane.
- spins goes the same way, and go to coherence back (so called spin echo).

NMR imaging: encoding I

 T_1 and T_2 relaxation times measured for selected points in the body.

Field gradient selects spin under resonance frequency.

Frequency encoding


• field B_0 with added gradient of field G_z : $B(z) = B_0 + G_z z$

- then, resonance frequency is $f(z) = \gamma B_0 + \gamma G_z z$
- \Rightarrow different resonance frequencies at different positions
 - base of all NMR imaging.

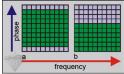
NMR imaging: encoding II

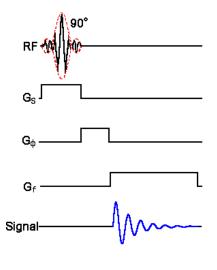
Slice selection

- switch on gradient of the field
- apply 90° excitation pulse at a given frequency ⇒ spins starts to precess only in one plane, where resonance condition is fulfilled
- gradient of field turns off ⇒ spin precesses only in a slice selected by applied field gradient

・ロット 今日 マイロット

NMR imaging: encoding III

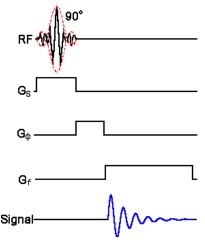

Phase Encoding Gradient


- **1** spins are excited (precessing)
- 2 gradient of field along x is applied
- 3 then, spins starts to precess at different frequencies
- 4 gradient is off, spin precess again at equal frequency, but with different phases \Rightarrow spin precession modulated in phase

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

NMR imaging: example of imaging sequence I

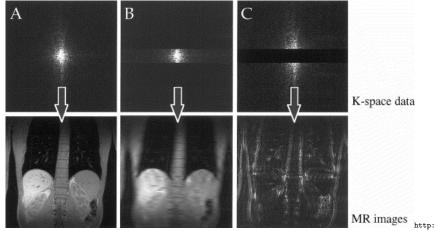
- RF : 90° rf pulse
- G_s : slice selection pulse (e.g. along z)
- G_{φ} : phase encoding gradient pulse (e.g. along y)
- G_f : frequency encoding gradient pulse (e.g. along x)
- $\Rightarrow : spins at different locations precess by$ $a unique phase angle <math>\varphi$ and precessional frequency f!



ロト イポト イラト イラト

nice overview of NMR: http://www.cis.rit.edu/htbooks/mri/inside.htm

NMR imaging: example of imaging sequence II


System is excited at different strengths of phase encoding gradient pulse \Rightarrow various precession signal are detected. Fourier transform can recovers both phase and frequency of a signal \Rightarrow by determining frequency and phase, one can determine strength of oscillation in each position of the slice.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

nice overview of NMR: http://www.cis.rit.edu/htbooks/mri/inside.htm

Example of *k*-space to *r*-space conversion by Fourier trans.

//www.sciencedirect.com/science/article/pii/S0720048X98001727

http://www.ajronline.org/doi/full/10.2214/AJR.07.2874